Recherche par propriété

Cette page fournit une simple interface de navigation pour trouver des entités décrites par une propriété et une valeur nommée. D’autres interfaces de recherche disponibles comprennent la page recherche de propriété, et le constructeur de requêtes ask.

Recherche par propriété

Une liste de toutes les pages qui ont la propriété « Step Content » avec la valeur « Remplacement de l'ancien bouton par le nouveau bouton qui est opérationnel. ». Puisqu’il n’y a que quelques résultats, les valeurs proches sont également affichées.

Affichage de 101 résultats à partir du n°1.

Voir (200 précédentes | 200 suivantes) (20 | 50 | 100 | 250 | 500).


    

Liste de résultats

  • Utiliser un bouton poussoir avec un Arduino  + (Le montage doit mettre en relation une LEDLe montage doit mettre en relation une LED entre une sortie du Arduino (On utilisera la sortie Digital 2) et le GND, un bouton poussoir entre une entrée du Arduino (On utilisera l’entrée Digital 3). On ajoute une résistance entre le 5V et l’entrée Digital 3. On utilise les mêmes connexions pour l’ensemble LED et résistance que dans le montage « Allumer une LED ». Il est possible de remplacer cette ensemble LED + résistances par 1 LED pour plus de luminosité. Utiliser une LED sans résistance réduit sa durée de vie. Lorsque le bouton poussoir est appuyé le Arduino verra le 0V sur l’entrée D3 et lorsque le bouton est relâché le Arduino verra 5V sur l’entrée D3.lâché le Arduino verra 5V sur l’entrée D3.)
  • Utiliser un bouton poussoir avec un Arduino  + (Le montage doit mettre en relation une LEDLe montage doit mettre en relation une LED entre une sortie du Arduino (On utilisera la sortie Digital 2) et le GND, un bouton poussoir entre une entrée du Arduino (On utilisera l’entrée Digital 3). On ajoute une résistance entre le 5V et l’entrée Digital 3. On utilise les mêmes connexions pour l’ensemble LED et résistance que dans le montage « Allumer une LED ». Il est possible de remplacer cette ensemble LED + résistances par 1 LED pour plus de luminosité. Utiliser une LED sans résistance réduit sa durée de vie. Lorsque le bouton poussoir est appuyé le Arduino verra le 0V sur l’entrée D3 et lorsque le bouton est relâché le Arduino verra 5V sur l’entrée D3.lâché le Arduino verra 5V sur l’entrée D3.)
  • ZExpermiment - Gravure de croquis à la laser  + (Le premier fichier que m'a transmis l'illuLe premier fichier que m'a transmis l'illustratrice était une photographie prise un peu à l'arrache et qu'il a fallut retraiter pour qu'elle soit plus exploitable. Pour cela, j'ai joué avec les réglages du logiciel Photofiltre : - Niveau automatique - Contraste automatique - Passage en niveaux de gris - Nettoyage du fond (l'idée était que le fond du croquis soit au maximum blanc, pour que la gravure soit propre).m blanc, pour que la gravure soit propre).)
  • ZExpermiment - Gravure de croquis à la laser  + (Le premier fichier que m'a transmis l'illuLe premier fichier que m'a transmis l'illustratrice était une photographie prise un peu à l'arrache et qu'il a fallut retraiter pour qu'elle soit plus exploitable. Pour cela, j'ai joué avec les réglages du logiciel Photofiltre : - Niveau automatique - Contraste automatique - Passage en niveaux de gris - Nettoyage du fond (l'idée était que le fond du croquis soit au maximum blanc, pour que la gravure soit propre).m blanc, pour que la gravure soit propre).)
  • Réveil2018  + (Les boutons ont été réalisé à l'aide d'une imprimante 3D Dessiner le bouton (logiciel sketchup) : modélisation en volume. Exporter en STL (logiciel de la machine 3D). Paramétrage de la machine 3D. Enregistrer au format .gcod Démarrer l'impression.)
  • Réveil2018  + (Les boutons ont été réalisé à l'aide d'une imprimante 3D Dessiner le bouton (logiciel sketchup) : modélisation en volume. Exporter en STL (logiciel de la machine 3D). Paramétrage de la machine 3D. Enregistrer au format .gcod Démarrer l'impression.)
  • Bentolux session octobre 2022 - Plateau Tournant Pokémon  + ('''Afin de plus personnaliser la Bentolux,'''Afin de plus personnaliser la Bentolux, j'ai conceptioné sur le logiciel 3D "TinkerCad" un nouveau bouton pour le potentiomètre.''' Afin de rester dans le thème de Pokémon, il comprendra une pokeball. L'image de la Pokeball à été vectorisé via le logiciel "Inkscape", puis insérer dans le logiciel de conception. Une fois le fichier 3D créer, on l'enregistre (au format stl) et on l'insère dans le logiciel "Cura". Une fois les paramètres rentrés, on peut créer le fichier gcode puis lancer l'impression.le fichier gcode puis lancer l'impression.)
  • Blindtouch Colombe L  + (A l'aide des vis et du tourne vis, fixer l'hélice au moteur. Brancher les trois fils sur le moteur à l'aide de la marche à suivre présentée sur le site "My Little Umbrella": http://littleumbrella.io/)
  • Silent Box  + (Lors du brainstorming sur le design, l'équipe s'est accordée sur un objet mobile en axant sur la circularité. L'objectif était d'afficher de manière claire les informations et notamment le seuil de tolérance sonore, tout en conservant un aspect ludique.)
  • Morse code - apprendre le morse par le son -  + (Machine utilisée : - Découpe laser pour Machine utilisée : - Découpe laser pour découper et graver le bois - Une imprimante Matériaux : - Une planche de bois de 5mm d'épaisseur et 40x 60 cm de largeur - Arduino Uno - Une breadboard - Une tarte pleine de fils - Un buzzer - Deux leds - Une matrice Led 8x8 - Deux boutons poussoir - Un élastique - Du papier A4 ou un carnet A6 d'une trentaine de pages - Papier noir, tissus ou encore serviette en papier noire Outils : - Feuilles de verre - Colle à bois - Soudeurlles de verre - Colle à bois - Soudeur)
  • Nichoir à abeilles sauvages et solitaires  + (Matériaux : *1 planche en bois (lorraine Matériaux : *1 planche en bois (lorraine sapin), épaisseur 27mm, non traitée *1 planche 80x50cm, contreplaqué okume exterieur, épaisseur 5mm *2 panneaux sapin de 80x50cm, épaisseur 20mm *6 tubes en verre ou éprouvettes diamètre 10mm (pour le tiroir d'observation) *Tiges de bambou et deux morceaux de branche diamètre 5cm et 19cm de long *Chevilles bois diamètre 8mm *Tourillon diamètre 10mm *Vis *Colliers serflex pour la fixation des panneaux *Colle à bois Outils : *Scie circulaire *Scie à bois *Gouges *Perceuse/visseuse *Marteau *Découpeuse laser pour le tiroir d'observation Note : La découpeuse laser est nécessaire pour fabriquer le tiroir d'observation et pour graver les panneaux d'information. Les tarifs d'utilisation d'une decoupeuse laser varient entre 20 et 40€ /heure. Bon à savoir : le fablab "Carrefour numérique" à La Villette met à disposition leurs découpeuses laser gratuitement. Si vous n’avez pas accès ou si vous ne voulez pas utiliser ce genre de machines vous pouvez fabriquer un tiroir d'observation en creusant des canaux dans une planche en bois. Vous référer à l'étape n° 4 ci-dessous. Recette et matériel nécessaire et pour préparer la peinture suédoise : https://www.espritcabane.com/decoration/faire-peinture/peinture-suedoise/coration/faire-peinture/peinture-suedoise/)
  • Plateaux pour épices  + ( * Coller les planches entre elles. * Met * Coller les planches entre elles. * Mettre une planche2 en dessous, une planche1 au milieu et à nouveau une planche2 au dessus. * Attention : bien les aligner bord à bord * presser les planches entre elles * laisser sécher la colle avec une pression répartie grâce à des planches et des serre-joints * Répéter l'opération une seconde fois avec les 3 autre plaques n une seconde fois avec les 3 autre plaques )
  • Livre de jeux (concours Trotec)  + (Mise en peinture de panneaux MDF pour les pages du livre et le tiroir du Puissance 4. Ici nous utilisons une peinture en bombe et essayons de donner un effet vieillit ou usé.)
  • Livre de jeux (concours Trotec)  + (Mise en peinture de panneaux MDF pour les pages du livre et le tiroir du Puissance 4. Ici nous utilisons une peinture en bombe et essayons de donner un effet vieillit ou usé.)
  • Lance-Rocket  + (Modélisation sur solidworks)
  • Multistation Météo Qualité de l'air  + (Pour la base du projet, des plans de bentoPour la base du projet, des plans de bentos déjà préparés nous ont été remis lors de la formation ainsi que les pièces nécessaires pour la partie station météo. En restant sur le même type de conception j'ai modelisé une boite à encoche à l'aide de l'extension "lasercut box" du logiciel Inkscape. Tous les plans nécessaires à cette réalisation se trouvent en pièces jointes.éalisation se trouvent en pièces jointes.)
  • Peindre sur carrelage  + (Nettoyez soigneusement le carrelage à l’eau claire à l’aide d’une éponge. Pour éliminer les taches grasses ou résistantes, utilisez de l’acétone et frottez à l’aide d’un chiffon.)
  • Prothèse de main commandée par des capteurs musculaires  + (Assembler ensuite les composants comme indiqué sur les photos. Serrer l'ensemble avec les vis.)
  • Prothèse de main commandée par des capteurs musculaires  + (Assembler ensuite les composants comme indiqué sur les photos. Serrer l'ensemble avec les vis.)
  • Tapis de décoration en mousse  + (Vous trouverez ici quelques exemples de diVous trouverez ici quelques exemples de différents assemblages possibles afin de créer des tapis différents. Pour chaque modèles, vous trouverez la dimension du tapis, le nombre de dalles nécessaires à la réalisation, le nombre de pièces à découper et le coût des matériaux.ièces à découper et le coût des matériaux.)
  • Tapis de décoration en mousse  + (Vous trouverez ici quelques exemples de diVous trouverez ici quelques exemples de différents assemblages possibles afin de créer des tapis différents. Pour chaque modèles, vous trouverez la dimension du tapis, le nombre de dalles nécessaires à la réalisation, le nombre de pièces à découper et le coût des matériaux.ièces à découper et le coût des matériaux.)
  • Fusée à eau simple et rapide  + (Il suffit ensuite de placer la bouteille sIl suffit ensuite de placer la bouteille sur le tuteur (le trou du bouchon ne laisse passer qu'un goutte à goutte) pour ne plus qu'à avoir à passer l'aiguille de gonflage à travers le bouchon, puis donner quelques coups de pompes pour profiter du décollage. La pression fait sauter le bouchon et la fusée décolle (attention aux éclaboussure et à ne pas être sur la trajectoire). Le bouchon reste normalement sur l'aiguille, ou au sol. Il suffit de récupérer la fusée et le bouchon pour refaire un lancement.e et le bouchon pour refaire un lancement.)
  • Fusée à eau simple et rapide  + (On s'assure que le bouchon est bien adaptéOn s'assure que le bouchon est bien adapté au goulot de la bouteille. ceux des bouteilles de bière s'adaptent très bien et ne sont pas abimés par un tire-bouchon. On coupe la partie large du bouchon, puis on perce avec une aiguille de gonflage le bouchon qui rentrera dans le goulot. Le même bouchon peut être utilisé pour de nombreux tirs. Mais il est toujours possible de le perdre au moment du lancement, ayez un bouchon de remplacement au cas où.ayez un bouchon de remplacement au cas où.)
  • Voiture télecommandée en bluetooth par son smartphone  + (La plupart de nos designs sont des prototyLa plupart de nos designs sont des prototypes. Dessinés sous Inkscape pour être découpés à la laser principalement, ils devaient pouvoir recevoir les différents éléments pour être facilement câblés par la suite. Pensez à mettre les connecteurs d'alimentation orientés vers l'extérieur pour ne pas être géné par la suite. Quelques soudures sur les fils moteurs et les pins du driver pour les maintenir. Par souci de gain de place, l'alimentation a été fixé sous les châssis. Une roue libre fixée à l'avant permet un contrôle droite ou gauche en bloquant un moteur du côté opposé. Suivre les schémas de câblage, en accord avec votre code Arduino pour les numéros de pins et voilà ! A noter que le 3.3V en sortie de l'arduino est suffisant pour alimenter notre HC05.o est suffisant pour alimenter notre HC05.)
  • Voiture télecommandée en bluetooth par son smartphone  + (La plupart de nos designs sont des prototyLa plupart de nos designs sont des prototypes. Dessinés sous Inkscape pour être découpés à la laser principalement, ils devaient pouvoir recevoir les différents éléments pour être facilement câblés par la suite. Pensez à mettre les connecteurs d'alimentation orientés vers l'extérieur pour ne pas être géné par la suite. Quelques soudures sur les fils moteurs et les pins du driver pour les maintenir. Par souci de gain de place, l'alimentation a été fixé sous les châssis. Une roue libre fixée à l'avant permet un contrôle droite ou gauche en bloquant un moteur du côté opposé. Suivre les schémas de câblage, en accord avec votre code Arduino pour les numéros de pins et voilà ! A noter que le 3.3V en sortie de l'arduino est suffisant pour alimenter notre HC05.o est suffisant pour alimenter notre HC05.)
  • Réalisation d'une pièce en 3D avec la fraiseuse numérique  + (Si votre programme comprend l'utilisation Si votre programme comprend l'utilisation de plusieurs outils différents, la machine passera en mode changement manuel d'outils entre chaque opération. Broche éteinte, la machine rejoindra son origine. Vous pourrez alors changer la fraise en respectant les consignes de l'étape précédente. Une fois la fraise changée, vous pourrez sélectionner "Tool Changed" dans le menu apparu sur le boitier de commande et appuyer sur "OK". L'usinage reprendra son cours jusqu'au prochain changement d'outil.
    squ'au prochain changement d'outil. <br/>)
  • Réalisation d'une pièce en 3D avec la fraiseuse numérique  + (Si votre programme comprend l'utilisation Si votre programme comprend l'utilisation de plusieurs outils différents, la machine passera en mode changement manuel d'outils entre chaque opération. Broche éteinte, la machine rejoindra son origine. Vous pourrez alors changer la fraise en respectant les consignes de l'étape précédente. Une fois la fraise changée, vous pourrez sélectionner "Tool Changed" dans le menu apparu sur le boitier de commande et appuyer sur "OK". L'usinage reprendra son cours jusqu'au prochain changement d'outil.
    squ'au prochain changement d'outil. <br/>)
  • Ventilateur USB  + (Faire passer le moteur dans le creux laissFaire passer le moteur dans le creux laissé par l'assemblage précédent. Enfiler le moteur par l'arrière, connexions en métal placées vers le haut. Pousser en tenant les trois profilés empilés et en poussant sur la pièce en plastique noir.
    ATTENTION : La pièce en queue d'oiseau est fragile. En la tenant pour pousser elle risque de rompre.
    Le moteur est bien positionné lorsqu'il dépasse légèrement à l'avant. Comme photographié sur la seconde image.
    ositionné lorsqu'il dépasse légèrement à l'avant. Comme photographié sur la seconde image.)
  • Ventilateur USB  + (Faire passer le moteur dans le creux laissFaire passer le moteur dans le creux laissé par l'assemblage précédent. Enfiler le moteur par l'arrière, connexions en métal placées vers le haut. Pousser en tenant les trois profilés empilés et en poussant sur la pièce en plastique noir.
    ATTENTION : La pièce en queue d'oiseau est fragile. En la tenant pour pousser elle risque de rompre.
    Le moteur est bien positionné lorsqu'il dépasse légèrement à l'avant. Comme photographié sur la seconde image.
    ositionné lorsqu'il dépasse légèrement à l'avant. Comme photographié sur la seconde image.)
  • Charger-Décharger Filament sur Ultimaker 3  + (Le filament va se retirer tout seul. Assurez-vous de bien enrouler sur la bobine (sans faire de noeud).)
  • Charger-Décharger Filament sur Ultimaker 3  + (Le filament va se retirer tout seul. Assurez-vous de bien enrouler sur la bobine (sans faire de noeud).)
  • Paracock(tail) Léonore  + (Placez les fils de telle façon : le noir sPlacez les fils de telle façon : le noir sur le marron, le rouge sur le rouge et le orange sur le orange. Puis placez les fils sur la carte Arduino : le fil noir sur GROUND et le rouge sur 5 VOLT. De l'autre côté placez le fil orange sur le numéro 9. Enfin branchez le cable sur la carte ainsi que sur le port USB de l'ordinateur.ainsi que sur le port USB de l'ordinateur.)
  • Pad d'arcade  + (Pour le Pic18f4550 un programmateur PickitPour le Pic18f4550 un programmateur Pickit 3 ( ~15€ ) suffis. Deux logiciels s'offrent à vous : - MPLab 8.92 + c18 compiler - MPLab X + xc8 compiler Pour une simple de raison de programme d'exemple disponible et de prise en main j'ai utilisé MPLab 8.91 + c18 compiler (disponible sur le site de Microchip) J'ai donc modifié le fichier d'exemple "HID - Mousse" pour en faire un HID - joypad Les fichiers qui vous seront utiles pour modification sont : * joypad.c ** #pragma config PLLDIV = X //(X = fréquence du quartz/4Mhz) ** char buffer[7]; // peut être modifié si vous changez les sorties de la manette ** void joypad(void) //à modifier si vous changez les sorties * usb_config.h ** #define HID_INT_IN_EP_SIZE      7 //nombre d'octets par message ** #define HID_RPT01_SIZE          55 // à changer si vous modifiez le "HID report" ** #define MY_VID 0x04D8 #define MY_PID 0x80FA // éditez si vous avez mieux, ce sont des VID et PID de microchip (non commerciaux) * joypad_map.c ** char Lect_ANX(void) *** N'est pas utilisé, mais quelques changements permettent d'effectuer la lecture d'un stick analogique. ** char Lect_XY(void) *** Permet la lecture de stick numérique (type arcade) ** char Lect_buton_X_to_Y (void) *** Permet la lecture des boutons *** Vous devrez probablement modifier les valeurs : if (botonX == 0) en fonction de vos soudure. * joypad_map.h ** Définie les utilitaires liés à joypad_map.c *** Pratique pour repérer les liens entre "entrée et bouton" * usb_descriptor.c ** Le fichier le plus complexe que vous pourriez avoir à modifier ** //Manufacturer string descriptor *** votre nom, plus ou moins **** n'oubliez pas de de modifier "string[25]" si vous changez le nombre de caractère ** //Product string descriptor *** Le nom qu'il aura dans le système (vue par les jeux et autres) **** N'oubliez pas de modifier "string[25]" si vous changez le nombre de caractères ***** (un nombre réduit de caractères < 12 , sans accents, est une bonne idée) ** //Class specific descriptor - HID joypad *** Bien que je vous déconseille de vous aventurer en terrain dangereux vous devrez toucher à cette horreur si vous souhaitez modifier les sorties du pad. *** Je n'ai pas tout compris à ce langage mais si vous souhaitez vous y aventurer : **** "usb_lyser" (payant mais version trial de 30 jour disponible) ***** Peut vous aider en récupérant les HID report des objets que vous connectez en USB à votre PC (souris pas chère, manette,...). **** MSDEV : Dt.exe (logiciel fournit par Microsoft) permet d'écrire les Bytes(octet) de code du HID report.crire les Bytes(octet) de code du HID report.)
  • Pad d'arcade  + (Pour le Pic18f4550 un programmateur PickitPour le Pic18f4550 un programmateur Pickit 3 ( ~15€ ) suffis. Deux logiciels s'offrent à vous : - MPLab 8.92 + c18 compiler - MPLab X + xc8 compiler Pour une simple de raison de programme d'exemple disponible et de prise en main j'ai utilisé MPLab 8.91 + c18 compiler (disponible sur le site de Microchip) J'ai donc modifié le fichier d'exemple "HID - Mousse" pour en faire un HID - joypad Les fichiers qui vous seront utiles pour modification sont : * joypad.c ** #pragma config PLLDIV = X //(X = fréquence du quartz/4Mhz) ** char buffer[7]; // peut être modifié si vous changez les sorties de la manette ** void joypad(void) //à modifier si vous changez les sorties * usb_config.h ** #define HID_INT_IN_EP_SIZE      7 //nombre d'octets par message ** #define HID_RPT01_SIZE          55 // à changer si vous modifiez le "HID report" ** #define MY_VID 0x04D8 #define MY_PID 0x80FA // éditez si vous avez mieux, ce sont des VID et PID de microchip (non commerciaux) * joypad_map.c ** char Lect_ANX(void) *** N'est pas utilisé, mais quelques changements permettent d'effectuer la lecture d'un stick analogique. ** char Lect_XY(void) *** Permet la lecture de stick numérique (type arcade) ** char Lect_buton_X_to_Y (void) *** Permet la lecture des boutons *** Vous devrez probablement modifier les valeurs : if (botonX == 0) en fonction de vos soudure. * joypad_map.h ** Définie les utilitaires liés à joypad_map.c *** Pratique pour repérer les liens entre "entrée et bouton" * usb_descriptor.c ** Le fichier le plus complexe que vous pourriez avoir à modifier ** //Manufacturer string descriptor *** votre nom, plus ou moins **** n'oubliez pas de de modifier "string[25]" si vous changez le nombre de caractère ** //Product string descriptor *** Le nom qu'il aura dans le système (vue par les jeux et autres) **** N'oubliez pas de modifier "string[25]" si vous changez le nombre de caractères ***** (un nombre réduit de caractères < 12 , sans accents, est une bonne idée) ** //Class specific descriptor - HID joypad *** Bien que je vous déconseille de vous aventurer en terrain dangereux vous devrez toucher à cette horreur si vous souhaitez modifier les sorties du pad. *** Je n'ai pas tout compris à ce langage mais si vous souhaitez vous y aventurer : **** "usb_lyser" (payant mais version trial de 30 jour disponible) ***** Peut vous aider en récupérant les HID report des objets que vous connectez en USB à votre PC (souris pas chère, manette,...). **** MSDEV : Dt.exe (logiciel fournit par Microsoft) permet d'écrire les Bytes(octet) de code du HID report.crire les Bytes(octet) de code du HID report.)
  • KALO' MATON Photomaton automatique à base de Raspberry Pi  + (Pour commencer ce tutoriel, vous allez avoPour commencer ce tutoriel, vous allez avoir besoin d’un ordinateur sur lequel vous allez installer Balena Etcher : https://www.balena.io/etcher/, qui est un logiciel libre de gravure d’images pour différents supports (clé USB, carte SD) pour GNU/Linux, Windows et MacOS. (Voir photos) Insérez votre carte SD dans un adaptateur USB qui lui est branché dans l'ordinateur avec lequel vous avez installé Etcher, puis cliquez sur "Select Image" et choisissez le Full.zip de Raspbian précédemment installé. Le disque dur sera normalement déjà sélectionné, mais si besoin, changez, et mettez votre adaptateur USB. Puis cliquez sur "Flash!" et attendez la fin du chargement. (J'ai du recommencer une autre fois, pour je ne sais quelle raison le premier essai fût un échec).lle raison le premier essai fût un échec).)
  • KALO' MATON Photomaton automatique à base de Raspberry Pi  + (Pour commencer ce tutoriel, vous allez avoPour commencer ce tutoriel, vous allez avoir besoin d’un ordinateur sur lequel vous allez installer Balena Etcher : https://www.balena.io/etcher/, qui est un logiciel libre de gravure d’images pour différents supports (clé USB, carte SD) pour GNU/Linux, Windows et MacOS. (Voir photos) Insérez votre carte SD dans un adaptateur USB qui lui est branché dans l'ordinateur avec lequel vous avez installé Etcher, puis cliquez sur "Select Image" et choisissez le Full.zip de Raspbian précédemment installé. Le disque dur sera normalement déjà sélectionné, mais si besoin, changez, et mettez votre adaptateur USB. Puis cliquez sur "Flash!" et attendez la fin du chargement. (J'ai du recommencer une autre fois, pour je ne sais quelle raison le premier essai fût un échec).lle raison le premier essai fût un échec).)
  • Poser en rénovation une fenêtre PVC  + (Pour commencer, assurez-vous que votre ancien bâti de fenêtre tienne correctement sur la maçonnerie.)
  • Laboîte - affichage de la qualité de l'air  + (Pour configurer l'affichage de la qualité Pour configurer l'affichage de la qualité de l'air sur votre boîte, vous devez disposer de l'identifiant d'un capteur Sensor Community (le vôtre ou celui d'un capteur proche de chez vous) : #Connectez vous au site https://france.maps.sensor.community/ et cliquez sur votre capteur (chaque capteur est représenté par une tuile hexagonale de couleur #Un panneau latéral s'ouvre et l'identifiant du capteur se situe en haut en dessous du mot Sensor (une suite de chiffres). Ici, j'ai sélectionné un capteur dans le centre de Rennes dont l'identifiant est le 17702
    Notez ou copiez cet identifiant, vous en aurez besoin dans l'étape suivante !

    ou copiez cet identifiant, vous en aurez besoin dans l'étape suivante !</div> </div><br/>)
  • Puzzle en bois  + (Pour assembler vos images, vous allez commPour assembler vos images, vous allez commencer par installer [https://inkscape.org/fr/ Inkscape] : il s’agit d’un logiciel libre avec lequel nous allons créer le dessin et créer le puzzle. Je n’expliquerai pas son fonctionnement en détails ici. De nombreux tutoriels existent [https://inkscape.org/fr/doc/tutorials/basic/tutorial-basic.fr.html à cette adresse par exemple] pour maîtriser la bête. Voici les étapes succinctes qui m’ont permises de créer ces chefs d’oeuvre ;-) : # Dans Inkscape, créez une zone de travail de la taille de votre puzzle. # Importez chacune de vos images (Fichier > Importer) # Vectorisez chaque image en noir et banc (Les paramètres que j’ai choisi : Passe simple en cochant les cases “adoucir”, “Empiler les passes”, “Retirer l’arrière-plan”). # Redimensionnez les images vectorisées si nécessaire et ordonnez les images dans les différents plans (premier plan, plans intermédiaires, dernier plan)
    {{{1}}}
    Si vous voulez limiter la difficulté de résolution du puzzle, notamment s’il se destine à un enfant, évitez les zone vides dans votre motif. Ajouter un arrière-plan légèrement gravé  permet de pallier ce soucis.
    À noter aussi que beaucoup de dessins sur Internet sont positifs, c’est à dire que leurs contours sont noirs et leurs fonds blanc. Tels quels, vous pourriez être décu(e) de n’avoir que peu de zones gravées sur vos puzzles. Pour contrer ce pépin, vous pouvez inverser les couleurs lors de la vectorisation.
    , vous pourriez être décu(e) de n’avoir que peu de zones gravées sur vos puzzles. Pour contrer ce pépin, vous pouvez inverser les couleurs lors de la vectorisation.</div> </div>)
  • Puzzle en bois  + (Pour assembler vos images, vous allez commPour assembler vos images, vous allez commencer par installer [https://inkscape.org/fr/ Inkscape] : il s’agit d’un logiciel libre avec lequel nous allons créer le dessin et créer le puzzle. Je n’expliquerai pas son fonctionnement en détails ici. De nombreux tutoriels existent [https://inkscape.org/fr/doc/tutorials/basic/tutorial-basic.fr.html à cette adresse par exemple] pour maîtriser la bête. Voici les étapes succinctes qui m’ont permises de créer ces chefs d’oeuvre ;-) : # Dans Inkscape, créez une zone de travail de la taille de votre puzzle. # Importez chacune de vos images (Fichier > Importer) # Vectorisez chaque image en noir et banc (Les paramètres que j’ai choisi : Passe simple en cochant les cases “adoucir”, “Empiler les passes”, “Retirer l’arrière-plan”). # Redimensionnez les images vectorisées si nécessaire et ordonnez les images dans les différents plans (premier plan, plans intermédiaires, dernier plan)
    {{{1}}}
    Si vous voulez limiter la difficulté de résolution du puzzle, notamment s’il se destine à un enfant, évitez les zone vides dans votre motif. Ajouter un arrière-plan légèrement gravé  permet de pallier ce soucis.
    À noter aussi que beaucoup de dessins sur Internet sont positifs, c’est à dire que leurs contours sont noirs et leurs fonds blanc. Tels quels, vous pourriez être décu(e) de n’avoir que peu de zones gravées sur vos puzzles. Pour contrer ce pépin, vous pouvez inverser les couleurs lors de la vectorisation.
    , vous pourriez être décu(e) de n’avoir que peu de zones gravées sur vos puzzles. Pour contrer ce pépin, vous pouvez inverser les couleurs lors de la vectorisation.</div> </div>)
  • Utiliser 2 Arduinos en série  + (Pour le Arduino esclave, ce montage est le même que le montage « Allumer une LED » Pour le Arduino maître, uniquement des connexions avec le Arduino esclave.)
  • Utiliser 2 Arduinos en série  + (Pour le Arduino esclave, ce montage est le même que le montage « Allumer une LED » Pour le Arduino maître, uniquement des connexions avec le Arduino esclave.)
  • Le crayon laser  + (Bravo, vous avez découpé et gravé le dessin de dragon !)
  • Le crayon laser  + (Bravo, vous avez découpé et gravé le dessin de dragon !)
  • Distributeur de croquettes connecte EN COURS...  + (Suite du tutoriel à venir prochainement)
  • Dessine et fabrique une mosaïque en Pixel Art  + (Présentation succinte de l’atelier. Nous allons créer un dessin sur l’ordinateur et le réaliser ensuite en mosaïque. Chercher sur Internet le logiciel de Pixel Art, par exemple PixilArt.)
  • Wikifab - Inscription et création d'un tutoriel  + (Voici ce que vous voyez, une fois connecté. Pour créer un tutoriel, cliquez sur le bouton, tout en haut "Créer un tutoriel")
  • Wikifab - Inscription et création d'un tutoriel  + (Voici ce que vous voyez, une fois connecté. Pour créer un tutoriel, cliquez sur le bouton, tout en haut "Créer un tutoriel")
  • Le Sac en jute pour jardiner ou pour récolter  + (Repliez les bords du sac 2 fois, sur des longueurs de 10 cm environ)
  • Le Sac en jute pour jardiner ou pour récolter  + (Repliez les bords du sac 2 fois, sur des longueurs de 10 cm environ)
  • Calendrier avec une planche de bois et du lin  + (Retirer la chaîne de la planche)
  • Calendrier avec une planche de bois et du lin  + (Retirer la chaîne de la planche)
  • Maintenance Trotec Speedy 300 : Realigner le miroir 2  + (Pour éviter de l'endommager dans la procédure qui suit.)
  • Maintenance Trotec Speedy 300 : Realigner le miroir 2  + (Avec un petit feutre)
  • Support de tablette - Woodi  + (Au choix, vous pouvez cirer, vernir, peindre, bruler... A venir, quelques images pour illustrer le cirage.)
  • Support de tablette - Woodi  + (Si vous avez besoin d'adapter la largeur de votre pièce de bois, utilisez une déligneuse ou scie circulaire sur table.)
  • Contrôler des neopixels comme un DJ  + (Si vous ne l'avez pas fait, ajouter le supSi vous ne l'avez pas fait, ajouter le support de l'ESP8266 dans le logiciel Arduino : [https://github.com/esp8266/Arduino#installing-with-boards-manager https://github.com/esp8266/Arduino#installing-with-boards-manager.] Il y a plusieurs façons d'uploader le firmware que nous allons utiliser, le plus simple est d'utiliser l'exemple '''ESP8266WebServer -> WebUpdate.''' N'oubliez pas de changer STASSID et STAPSK avec le nom de votre réseau Wi-Fi et votre mot de passe. #define STASSID "your-ssid" #define STAPSK "your-password" * Téléverser '''ESP8266WebServer -> WebUpdate.''' * Appuyer sur le bouton RESET de l'ESP8266. * Aller sur http://esp8266-webupdate.local.266. * Aller sur http://esp8266-webupdate.local.)
  • Contrôler des neopixels comme un DJ  + (Si vous ne l'avez pas fait, ajouter le supSi vous ne l'avez pas fait, ajouter le support de l'ESP8266 dans le logiciel Arduino : [https://github.com/esp8266/Arduino#installing-with-boards-manager https://github.com/esp8266/Arduino#installing-with-boards-manager.] Il y a plusieurs façons d'uploader le firmware que nous allons utiliser, le plus simple est d'utiliser l'exemple '''ESP8266WebServer -> WebUpdate.''' N'oubliez pas de changer STASSID et STAPSK avec le nom de votre réseau Wi-Fi et votre mot de passe. #define STASSID "your-ssid" #define STAPSK "your-password" * Téléverser '''ESP8266WebServer -> WebUpdate.''' * Appuyer sur le bouton RESET de l'ESP8266. * Aller sur http://esp8266-webupdate.local.266. * Aller sur http://esp8266-webupdate.local.)
  • Portemanteau planche de skate  + (- Poncez les champs de la planche pour rendre le champs bien droit (atténuez les zigzags dus à la découpe), - Poncez à 45° pour arrondir les arêtes jusqu’à obtenir un champ bien arrondi.)
  • Portemanteau planche de skate  + (Si vous partez d'une planche non découpé. Si vous partez d'une planche non découpé.
    Personnellement je trouve les planches brut non découpé sur des sites d'annonce entre particulier en tapant les mots clé ''' Planche de Skate Brute''' ou encore sur des sites de ventes d'article de sport.
    -Imprimez le gabarit de découpe de la forme de la planche que vous souhaitez -Ensuite reportez la forme sur le dessous de la planche avec un crayon à papier
    Il est important que le tracé soit sur le dessous de la planche pour une facilité de découpe par la suite.
    Trouvez dans ce lien les gabarits nécessaire pour cette étape.
    www.thingiverse.com/thing:1947090
    </i></div> <div class="icon-instructions-text">Trouvez dans ce lien les gabarits nécessaire pour cette étape.</div> </div> www.thingiverse.com/thing:1947090)
  • Porte-Manteau en planche de skate/fr  + (- Poncez les champs de la planche pour rendre le champs bien droit (atténuez les zigzags dus à la découpe), - Poncez à 45° pour arrondir les arêtes jusqu’à obtenir un champ bien arrondi.)
  • Mise en service d'un thermomètre connecté  + (-connecter l'ESP01 sur le shield -relier l'alimentation de la cellule au SHIELD)
  • Mise en service d'un thermomètre connecté  + (-connecter l'ESP01 sur le shield -relier l'alimentation de la cellule au SHIELD)
  • Gravure Standard  + (Sur Adobe Illustrator réaliser une illustration/dessin (ou alors vectoriser une image existante))
  • Hands up Ready Go Scratch tutorial  + (First of all, click on the small cat pictuFirst of all, click on the small cat picture called “Sprite”. Pick a ‘starting block’ in the Event section (in brown). The green flag block is the most common. Next, pick one “if then” block for each team (you can find this in the Control -yellow- section). Choose a key for each “if then” block and connect it via the alligator clip to the Makey makey. It’s now time to discover a new type of blocks under the section “Looks”. We will start by using ‘switch backdrop to …’, we need one for the beginning of the code to set the background to the initial position (multicolor one), and one per each “IF THEN” block.or one), and one per each “IF THEN” block.)
  • Hands up Ready Go Scratch tutorial  + (First of all, click on the small cat pictuFirst of all, click on the small cat picture called “Sprite”. Pick a ‘starting block’ in the Event section (in brown). The green flag block is the most common. Next, pick one “if then” block for each team (you can find this in the Control -yellow- section). Choose a key for each “if then” block and connect it via the alligator clip to the Makey makey. It’s now time to discover a new type of blocks under the section “Looks”. We will start by using ‘switch backdrop to …’, we need one for the beginning of the code to set the background to the initial position (multicolor one), and one per each “IF THEN” block.or one), and one per each “IF THEN” block.)
  • Étagères tiroirs  + (Tout d'abord, couper les tiroirs de la proTout d'abord, couper les tiroirs de la profondeur souhaitée de vos futures étagères. Attention ! plus elles seront "profondes" moins elles tiendront bien contre votre mur ! pour ma part je leur ai donné une profondeur d'environ 15cm Vous pouvez aussi choisir de leur donner une profondeur différente à chacune !nner une profondeur différente à chacune !)
  • Étagères tiroirs  + (Tout d'abord, couper les tiroirs de la proTout d'abord, couper les tiroirs de la profondeur souhaitée de vos futures étagères. Attention ! plus elles seront "profondes" moins elles tiendront bien contre votre mur ! pour ma part je leur ai donné une profondeur d'environ 15cm Vous pouvez aussi choisir de leur donner une profondeur différente à chacune !nner une profondeur différente à chacune !)
  • Pavé Numérique MIDI  + (Souder les headers sur la stripboard, vousSouder les headers sur la stripboard, vous pouvez vous aider de l’arduino micro pour ne pas vous tromper sur l’espacement (de 5 cases entre les deux) ''Personnellement, je n’ai pas utilisé de headers pour l’afficheur OLED, car j’avais retiré les broches.''ur OLED, car j’avais retiré les broches.'')
  • Pavé Numérique MIDI  + (Vous pouvez soit coller le keypad (avec un pistolet à colle à chaud) où soit le visser en faisant des trous sur la stripboard. Il vaut mieux fixer le keypad avant de souder les câbles pour pouvoir plus facilement vérifier la longueur des câbles.)
  • CHAMBOUL'TOUT  + ( * Utilisation par Kelle fabrik pour des a * Utilisation par Kelle fabrik pour des animations supplémentaires * Mission locale octobre (promotion du parrainage) * et pourquoi pas Fête de quartier, fête des écoles, caf&co * Récolter des fonds '''Idées de création évoquées :''' * Chamboule-tout empilable spontanément au moyen de cordes par exemple * Utiliser des aimants pour que les boites se retrouvent en lévitation * Logiciel permettant de calculer le score * Filet permettant de récupérer les boites ore * Filet permettant de récupérer les boites )
  • Système photovoltaïque pour cabane de jardin avec batterie Li-ion  + (Télécharger le fichier SCAD des supports thingiverse.com/thing:666162 Modifier le fichier scad pour obtenir un support de 30 cellules exporter le fichier STL.)
  • Système photovoltaïque pour cabane de jardin avec batterie Li-ion  + (Mise en place des cellules pour former 3 sMise en place des cellules pour former 3 série de 10 cellules en parallèle. Il est important de bien vérifier les polarités des cellules, il y a 3 séries de 10 cellules. Toutes les cellules ont été chargées à une tension de 4,2V Pour bien comprendre l'utilisation des cellules 18650, je vous conseille de lire les tutos suivant : [[Batterie Li-ion 36V 20A à partir de cellule 18650 de récupération]] [[Recyclage des batteries Li-ion]]des batteries Li-ion]])
  • RainMan 2  + (A l'aide d'un petit tournevis plat, visserA l'aide d'un petit tournevis plat, visser le moteur sur la plaque en bois comme sur la photo ci-contre. Une fois le moteur fixé, assembler les plaques en plastique du haut, du bas et de deux côtés, pour que l'intérieur reste accessible. La plaque contenant le socle en liège et le plaque de bois doit se trouver en haut (la face contenant socle en liège vers le haut). Fixer les plaques avec de la colle ou du scotch.les plaques avec de la colle ou du scotch.)
  • RainMan 2  + (A l'aide d'un petit tournevis plat, visserA l'aide d'un petit tournevis plat, visser le moteur sur la plaque en bois comme sur la photo ci-contre. Une fois le moteur fixé, assembler les plaques en plastique du haut, du bas et de deux côtés, pour que l'intérieur reste accessible. La plaque contenant le socle en liège et le plaque de bois doit se trouver en haut (la face contenant socle en liège vers le haut). Fixer les plaques avec de la colle ou du scotch.les plaques avec de la colle ou du scotch.)
  • Voiture aluminium  + (Utiliser une imprimante 3D pour faire le prototype en plastique.)
  • Voiture aluminium  + (Utiliser une imprimante 3D pour faire le prototype en plastique.)
  • Little UMBRELLA  + (Faites passer le fil de fer dans le socle Faites passer le fil de fer dans le socle près du bouchon -> plantez la tige du parapluie dans le liège Accrochez le fil de fer à l'hélice du moteur (le parapluie doit pouvoir s'ouvrir et rester ouvert en restant bien figé sur le bouchon) Placez la carte Arduino à l'intérieur de la boite, en faisant passer le câble USB par le trou prévu à cet effet.r le câble USB par le trou prévu à cet effet.)
  • TonUINO  + (Vous allez devoir aller télécharger l’[httVous allez devoir aller télécharger l’[https://github.com/tonuino/TonUINO-TNG archive TonUINO sur Github]. Pour ce faire, cliquez sur le bouton « code », puis « Download zip ». De base, tout est en allemand. Pour que l’utilisation de votre TonUINO soit plus simple à terme, je vous recommande de télécharger les fichiers audio en français à partir de [https://oc.gryzan.de/s/bdjoMEsKLWbo7cX ce lien. ] Vous pourrez utiliser le contenu du dossier «sdcard_fr» pour mettre sur votre MicroSD.r le contenu du dossier «sdcard_fr» pour mettre sur votre MicroSD.)
  • Klaxon pour ZOE  + (A l'aide de deux bouts de patafix, fixer le bouton de sonnette dans l'habitacle)
  • Klaxon pour ZOE  + (A l'aide de deux bouts de patafix, fixer le bouton de sonnette dans l'habitacle)
  • Introduction à la CNC  + (Une fraiseuse est une machine-outil qui usUne fraiseuse est une machine-outil qui usine par enlèvement de matière, à l'aide d'un outil tournant (fraise). La méthode d’usinage est dite soustractive, à l’inverse la méthode d’usinage d’une imprimante 3D est dite additive (ajout de matière). Le FaBLab est équipé d’une fraiseuse numérique "Signstech 6090DS "personalisée, d’une surface de travail de 1*1 m. et d'une puissance de 1.5kw. C'est une fraiseuse 3 axes, c'est à dire que la fraise (l’outil de coupe) se déplace sur 3 axes qui sont X, Y et Z. ●    Axe X => Gauche-droite (Axe horizontal) ●    Axe Y => Avant-arrière (Axe de profondeur) ●    Axe Z => Haut-bas (Axe vertical) Pourquoi choisir la fraiseuse au lieu de la découpeuse laser ? ●    Avantages : -La fraiseuse permet d'usiner des matériaux plus épais, et sans contrainte de composants tels que le chlore ou la colle. Le PVC ne s’usine que sur la fraiseuse ('''jamais''' laser) -Il n’y a pas de zone affectée thermiquement -La fraiseuse numérique permet de produire des pièces en 2.5D (en volume), alors qu’une découpeuse laser ne permet de découper qu’en 2D (contours). ●    Inconvénients : -La fraiseuse est moins précise qu’une découpeuse laser -Les fraises étant des outils cylindriques , les coins intérieurs sont forcément arrondis. -La complexité de la machine ainsi que les règles de sécurité qui lui sont liées rendent la machine plus complexe à prendre en main que les autres CNC, et donc un temps plus long avant d'être autonome sur celle-ci.temps plus long avant d'être autonome sur celle-ci.)
  • Introduction à la CNC  + (La CNC permet d'usiner plusieurs types de La CNC permet d'usiner plusieurs types de matériaux tels que : ○    Le bois massif et des dérivés du bois (MDF, contreplaqué…) ○    Les matériaux plastiques (PMMA, POM, PC, PVC…) ○    Les métaux non-ferreux (Aluminium tendre, Cuivre, laiton…)
    Métaux ferreux : On n’en usine pas au FaBLab car la fraiseuse n'est pas équipée d'un système de jet de liquide de refroidissent et n'est pas d'une puissance suffisante.
    ○     Les Mousses (PU, Polystyrène…) ○     Le caoutchouc et certains silicones
    Eviter les matériaux fibreux (fibres de carbone ou de verre) : les micro-poussières générées sont difficiles a filtrer (mauvais pour les poumons)

    de carbone ou de verre) : les micro-poussières générées sont difficiles a filtrer (mauvais pour les poumons)</div> </div><br/>)
  • Capteur BioData pour ESP32  + (Avant tout, veuillez noter que les connexiAvant tout, veuillez noter que les connexions de la plaque d'essai sont identifiées par des chiffres et des lettres. Les colonnes sur le coté sont également identifiées '''+''' et '''-''' Positionnez ensuite le composant 555 sur la plaque de test en respectant la position du 555 sur la plaque d'essais. Attention au sens du 555, la petite marque ronde sur le composant doit être vers le haut.
    e composant doit être vers le haut. <br/>)
  • Capteur BioData pour ESP32  + (Un fil noir entre '''a2''' et la ligne de masse. Un fil rouge entre '''a5''' et la ligne '''+5V.''')
  • Jardinière en caisse de vin  + (Utiliser de la lasure incolore et un gros Utiliser de la lasure incolore et un gros pinceau. 3 couches sont nécessaires avec un temps de repos moyen de 2h (veillez à bien vérifier que votre caisse soit parfaitement sèche avant de poser une nouvelle couche). Vous pouvez utiliser des bouchons de bouteilles de lait pour poser votre caisse et permettre au dessous de sécher. caisse et permettre au dessous de sécher.)
  • Jardinière en caisse de vin  + (Utiliser de la lasure incolore et un gros Utiliser de la lasure incolore et un gros pinceau. 3 couches sont nécessaires avec un temps de repos moyen de 2h (veillez à bien vérifier que votre caisse soit parfaitement sèche avant de poser une nouvelle couche). Vous pouvez utiliser des bouchons de bouteilles de lait pour poser votre caisse et permettre au dessous de sécher. caisse et permettre au dessous de sécher.)
  • Box d'ambiance lumineuse qui se cale sur un seuil de temperature  + (L'impression ne prend pas trop de temps SaL'impression ne prend pas trop de temps Sachez que peindre ce bouton n'est pas si simple à moins de lui donner de la rugosité. Sinon, optez pour un PMA (plastique) de couleur assorti :).
    30 à 40 mn d'impression
    Bouton à imprimer en 3D (vectoriel et gcode) : https://www.dropbox.com/sh/a2uhzm7ui1ucgwl/AACBwlyigA6JCmAIx2waKKbba?dl=0
    riel et gcode) : https://www.dropbox.com/sh/a2uhzm7ui1ucgwl/AACBwlyigA6JCmAIx2waKKbba?dl=0)
  • Box d'ambiance lumineuse qui se cale sur un seuil de temperature  + (L'impression ne prend pas trop de temps SaL'impression ne prend pas trop de temps Sachez que peindre ce bouton n'est pas si simple à moins de lui donner de la rugosité. Sinon, optez pour un PMA (plastique) de couleur assorti :).
    30 à 40 mn d'impression
    Bouton à imprimer en 3D (vectoriel et gcode) : https://www.dropbox.com/sh/a2uhzm7ui1ucgwl/AACBwlyigA6JCmAIx2waKKbba?dl=0
    riel et gcode) : https://www.dropbox.com/sh/a2uhzm7ui1ucgwl/AACBwlyigA6JCmAIx2waKKbba?dl=0)
  • Lampe modulable selon votre déco (concours Trotec)  + (Pour les 3 échelles : 3 taquets A 18 taquets B 27 taquets C)
  • Lampe modulable selon votre déco (concours Trotec)  + (Pour les 3 échelles : 3 taquets A 18 taquets B 27 taquets C)
  • Nami Weather BOX  + (Via la découpeuse laser, couper tous les éléments présent dans les fichiers support Bentolux v2019 (bois et plexi))
  • Impression 3D  + (Voilà une présentation des différentes étVoilà une présentation des différentes étapes pour vous laissez libre court à votre imagination : -Rendez-vous sur le site : [https://www.tinkercad.com/dashboard https://www.tinkercad.com] -Créez vous un compte Autodesk -Cliquez ensuite sur le bouton "Créer une conception" Ce logiciel étant simplifié il vous permettra de pouvoir créer vos idées les plus folles.
    ir créer vos idées les plus folles. <br/>)
  • Manette double d'arcade  + (Vous pouvez commander un kit d'arcades surVous pouvez commander un kit d'arcades sur ce site : http://www.smallcab.net/joysticks-zippy-boutons-p-608.html ou sur des sites chinois, à vous de voir. Pensez aussi à commander les câbles GPIO et des switchs s'ils ne sont pas inclus dans le kit. Par défaut, vous pouvez relier directement votre manette à votre raspberry pi par les câbles GPIO (Cf cas 1 plus loin). Le raspberry pi doit être accroché à votre structure. Pour ma part, je voulais pouvoir relier ma manette à l'aide d'un câble USB pour pouvoir l'enlever facilement de mon raspberry pi qui me sert de mediacenter dans le salon. J'ai donc acheté en plus une carte USB Xin-Mo (http://www.smallcab.net/joueurs-p-1318.html) sur laquelle je viens connecter les câbles GPIO (cf cas 2 plus loin).cter les câbles GPIO (cf cas 2 plus loin).)
  • Manette double d'arcade  + (Vous pouvez commander un kit d'arcades surVous pouvez commander un kit d'arcades sur ce site : http://www.smallcab.net/joysticks-zippy-boutons-p-608.html ou sur des sites chinois, à vous de voir. Pensez aussi à commander les câbles GPIO et des switchs s'ils ne sont pas inclus dans le kit. Par défaut, vous pouvez relier directement votre manette à votre raspberry pi par les câbles GPIO (Cf cas 1 plus loin). Le raspberry pi doit être accroché à votre structure. Pour ma part, je voulais pouvoir relier ma manette à l'aide d'un câble USB pour pouvoir l'enlever facilement de mon raspberry pi qui me sert de mediacenter dans le salon. J'ai donc acheté en plus une carte USB Xin-Mo (http://www.smallcab.net/joueurs-p-1318.html) sur laquelle je viens connecter les câbles GPIO (cf cas 2 plus loin).cter les câbles GPIO (cf cas 2 plus loin).)
  • Utilisation Four BLUE M  + (Mettre en route l'extracteur de la salle blanche)
  • Etui à lunette en bois personnalisé  + (je suis allé sur [https://www.festi.info/je suis allé sur [https://www.festi.info/boxes.py/ Boxes.py] pour choisir la boite qui deviendra l'étui à lunette. Quand vous arrivé sur le site choisissait la premier boite flexible de la liste. Quand vous avait réglé tout les paramètre à votre convenance appuyé sur généré. ensuite le site vous ouvrira une nouvelle page avec tout les morceaux de la boite à plat. Faite un clique droit puis enregistré sous pour pouvoir télécharge le fichier de votre boite sous format svg.le fichier de votre boite sous format svg.)
  • Recycleur de pla  + (On monte le bouchon de laiton sur le tuyau de cuivre)
  • Anèmomètre  + (utiliser les fichiers STL https://gitlab.com/norbertwalter67/Windsensor_WiFi_1000/-/tree/master/CAD-Files/3D-Parts/STL?ref_type=heads)
  • Disquorde - Meuble lecteur vinyle  + ( * percer avec une mèche de 10 les angles arrondis du carré (en bleu dans la première image) * découper le bords de la poche (en rouge dans la première image) à la scie radiale et la scie sauteuse par exemple )
  • Petit bras robotique  + (Dans mBlock ouvrez un nouveau dossier. N'oDans mBlock ouvrez un nouveau dossier. N'oubliez pas les étapes : - connecter le câble usb après branchement - connecter > usb - téléverser le microporgramme - cliquer le drapeau vert Pour ceci on cré une variable, position. Changez la variable quand on presse la flèche droite. De combien de degrés est-ce qu'on peut changer la position du moteur ?ce qu'on peut changer la position du moteur ?)
  • Laboîte - suivi de la consommation électrique à la maison  + ( #La première étape consiste à récupérer l #La première étape consiste à récupérer les données de consommation électrique depuis [https://translate.google.com/translate?hl=&sl=en&tl=fr&u=https%3A%2F%2Fguide.openenergymonitor.org%2Fapplications%2Fhome-energy%2F emoncms]. Il existe de nombreuses solutions alternatives à [https://translate.google.com/translate?hl=&sl=en&tl=fr&u=https%3A%2F%2Fguide.openenergymonitor.org%2Fapplications%2Fhome-energy%2F emoncms] mais cette solution présente les avantages suivants : #*Les données sont stockées chez vous #*L'écosystème logiciel et matériel est libre et basé sur des élément réparables et compatibles avec [[laboîte]]! #*La précision des mesures est excellente (89% en utilisant une pince ampèremétrique et 99% en utilisant un capteur d'impulsions) #Connectez-vous [https://emoncms.org/user/view à votre compte emoncms] et copiez votre clé d'API de lecture (''Read API Key'') #Ensuite sur la pages Flux (''Feeds''), copiez les identifiants de vos flux de consommation instantanée (en W) et énergie quotidienne (en kWhd) de consommation instantanée (en W) et énergie quotidienne (en kWhd) )
  • Laboîte  + ( #La première étape consiste à souder le c #La première étape consiste à souder le connecteur « 5 broches sécable » sur un des modules « 4 matrices de LEDs » #Vous pouvez ensuite insérer les deux modules « 4 matrices de LEDs » dans le boîtier imprimé en 3D en vérifiant que les connecteurs extérieurs passent par les trous sur le côté (le module où vous avez soudé le connecteur doit se trouver en haut) #Connectez ensuite le microcontrôleur avec les matrices de LEDs comme suit :
    Module « 4 matrices de LEDs » Microcontrôleur
    VCC USB
    GND GND
    DIN MOSI
    CLK SCK
    CS 4
    t;</tr><tr> <td><code>DIN</code> </td><td><code>MOSI</code> </td></tr><tr> <td><code>CLK</code> </td><td><code>SCK</code> </td></tr><tr> <td><code>CS</code> </td><td><code>4</code> </td></tr></table> )
  • Bentolux - Module qualité de l'air ambiant  + ( *Decoupe au laser des parois de la boite (DOC1) *Assemblage de la boite (DOC2) *Branchement des composants (DOC3) *Programmation du code pour faire interagir les élements (ecran LCD, capteur Temp/Hum, anneau OLED) (DOC4) <br/> )
  • Commande et instrumentation de trottinette électrique 500W avec Arduino méga  + (<nowiki>'''2. Bibliographie :'''<'''2. Bibliographie :'''

    Lien download :

    '''sketch_escooter_feed_back_reel_V1.ino''' 

    https://drive.google.com/file/d/0B_fB3GAsM02FSlRTWHdyRkhuUW8/view?usp=sharing

    '''escooter_ampli_SIMULINK.mdl'''

    https://drive.google.com/file/d/0B_fB3GAsM02FOW9OdmlhdDhJZGc/view?usp=sharing

    '''escooter feed back ISIS.DSN'''

    https://drive.google.com/file/d/0B_fB3GAsM02FOXdRWFN5OWRMQkE/view?usp=sharing

    En anglais

    https://forum.arduino.cc/index.php?topic=477397.0

    article : « Etude de trottinettes électriques 100W et 500W (Arduino), Revue 3EI 2017 »

    En attente

    '''3. Programme en boucle ouverte''' 

    Pour tester la programmation, nous simulons le programme dans ISIS, comme on peut le voir sur la figure suivante. De plus, nous avons un afficheur LCD pour afficher des données (rapport cyclique correspondant à la PWM à 32Khz, le courant moteur, la tension moteur, l'action sur les boutons poussoirs. En effet, 4 boutons poussoirs sont utilisés.

    BP1 pour incrémenter manuellement le rapport cyclique, BP2 le  décrémenter. BP3 mettre le rapport cyclique à 0, correspondant au contact frein. 

    La vitesse du moteur est pratiquement proportionnelle au rapport cyclique

    https://i58.servimg.com/u/f58/17/56/35/17/a211.jpg

    Nous avons réalisé notre propre amplificateur de courant qui s'appelle un hacheur abaisseur mais il est possible d'acheter un shield

    Il existe de nombreuses cartes pour Arduino pour commander des moteurs DC surtout de faibles puissances et aussi de grandes puissances comme on peut l'observer sur les liens suivants. 

    http://www.robotpower.com/products/MegaMotoPlus_info.html

    http://www.robotshop.com/en/dc-motor-driver-2-15a.html

    https://www.pololu.com/file/0J51/vnh3sp30.pdf

    https://i58.servimg.com/u/f58/17/56/35/17/a310.jpg

    mais, tous ces hacheurs shields mesurent le courant en interne mais il n'y a pas de limitation de courant. 

    Pour avoir une limitation de courant il faut une boucle de courant analogique en utilisant des AOP ou CI spécialisée ou une boucle de courant numérique rapide.

    Mais quel doit être la valeur du courant de limitation ?

    Le choix de la valeur du courant est normalement pour le Service de fonctionnement 1 heure pour pouvoir effectuée des montées relativement longue sans atteindre la température critique du moteur.

    Dans notre cas, le courant de limitation devra etre de 

    Imoteur limitation=Puissance/Ubatterie=500W/24 V=20A

    De plus, le transistor de puissance du hacheur ne peut supporter que 50A dans notre cas.

    Mais en boucle ouverte, il n'a pas de régulation de courant, pour ne pas avoir de dépassement du courant maximum, une rampe du rapport cyclique sera utilisé.

    Une routine d'interruption de 0.1 seconde sera utilisé pour faire la mesure de la tension est du courant (échantillon de mesure, sample ). Ce temps de sampler est arbitraire, mais ne permet pas d'être plus rapide que le temps de montée du courant car la constante de temps électrique du moteur étant de  L/R= 1.5ms.

    Le fonctionnement en boucle ouverte avec une rampe de 25.5s (8bit et routine d'interruption de 0.1s) permet de bien comprendre la problématique du fonctionnement d'une commande à moteur DC.

    l'affichage se fera seulement tous les 0.2s pour avoir une stabilité des chiffres à l’écran. De plus, un filtrage numérique, se fera sur le courant et la tension sur 4 valeurs donc sur 0.4s.

    '''Algo boucle ouverte'''

    Routine d'interruption toutes les 0.1S

    Lire tension et courant

    Boucle loop (scrutation des boutons poussoirs) 

    Si BP1=1 alors incrementer PWM

    Si BP2=1 alors décrementer PWM

    Si BP3=1 alors PWM=0

    Affichage des variables tous les 0.2s

    '''code'''

    {{

    // include the library code:

    #include

    #include

    #include

    #define SERIAL_PORT_LOG_ENABLE 1

    #define Led     13       // 13 pour la led jaune sur la carte

    #define BP1     30       // 30 BP1

    #define BP2     31       // 31 BP2           

    #define BP3     32       // 32 BP3

    #define LEDV    33       // 33 led

    #define LEDJ    34       // 34 led

    #define LEDR    35       // 35 led

    #define relay   36       // 36 relay

    #define PWM10    10      //11   timer2    

    LiquidCrystal lcd(27, 28, 25, 24, 23, 22); // RS=12, Enable=11, D4=5, D5=4, D6= 3, D7=2, BPpoussoir=26

    // Configuration des variables

    unsigned   int UmoteurF = 0;  // variable to store the value coming from the sensor

    unsigned   int Umoteur = 0;

    unsigned   int Umoteur2 = 0;

    unsigned   int Umoteur3 = 0;

    unsigned   int Umoteur4 = 0;

    unsigned   int ImoteurF = 0;  

    unsigned   int Imoteur = 0;

    unsigned   int Imoteur2 = 0;

    unsigned   int Imoteur3 = 0;

    unsigned   int Imoteur4 = 0;

    byte Rcy=0 ;    //rapport cyclique  8bit

    unsigned    int temps;

    // the setup function runs once when you press reset or power the board

    void setup() {

    pinMode(Led, OUTPUT);   //led carte arduino

    pinMode(LEDV, OUTPUT);

    pinMode(LEDR, OUTPUT);

    pinMode(LEDJ, OUTPUT);

    pinMode (PWM10,OUTPUT);     // broche (10) en sortie  timer2

    //  digitalWrite(LEDV,LOW);

    Timer1.initialize(100000);         // initialize timer1, and set a 0,1 second period =>  100 000

    Timer1.attachInterrupt(callback);  // attaches callback() as a timer overflow interrupt

    lcd.begin(20, 4);  

    Serial1.begin(9600); 

    TCCR2B = (TCCR2B & 0b11111000)
    r power the board<br /><br />void setup() {<br /><br />pinMode(Led, OUTPUT);   //led carte arduino<br /><br />pinMode(LEDV, OUTPUT);<br /><br />pinMode(LEDR, OUTPUT);<br /><br />pinMode(LEDJ, OUTPUT);<br /><br />pinMode (PWM10,OUTPUT);     // broche (10) en sortie  timer2<br /><br />//  digitalWrite(LEDV,LOW);<br /><br />Timer1.initialize(100000);         // initialize timer1, and set a 0,1 second period =>  100 000<br /><br />Timer1.attachInterrupt(callback);  // attaches callback() as a timer overflow interrupt<br /><br />lcd.begin(20, 4);  <br /><br />Serial1.begin(9600); <br /><br />TCCR2B = (TCCR2B & 0b11111000)</nowiki>)
  • Commande et instrumentation de trottinette électrique 500W avec Arduino méga  + (<nowiki>'''2. Bibliographie :'''<'''2. Bibliographie :'''

    Lien download :

    '''sketch_escooter_feed_back_reel_V1.ino''' 

    https://drive.google.com/file/d/0B_fB3GAsM02FSlRTWHdyRkhuUW8/view?usp=sharing

    '''escooter_ampli_SIMULINK.mdl'''

    https://drive.google.com/file/d/0B_fB3GAsM02FOW9OdmlhdDhJZGc/view?usp=sharing

    '''escooter feed back ISIS.DSN'''

    https://drive.google.com/file/d/0B_fB3GAsM02FOXdRWFN5OWRMQkE/view?usp=sharing

    En anglais

    https://forum.arduino.cc/index.php?topic=477397.0

    article : « Etude de trottinettes électriques 100W et 500W (Arduino), Revue 3EI 2017 »

    En attente

    '''3. Programme en boucle ouverte''' 

    Pour tester la programmation, nous simulons le programme dans ISIS, comme on peut le voir sur la figure suivante. De plus, nous avons un afficheur LCD pour afficher des données (rapport cyclique correspondant à la PWM à 32Khz, le courant moteur, la tension moteur, l'action sur les boutons poussoirs. En effet, 4 boutons poussoirs sont utilisés.

    BP1 pour incrémenter manuellement le rapport cyclique, BP2 le  décrémenter. BP3 mettre le rapport cyclique à 0, correspondant au contact frein. 

    La vitesse du moteur est pratiquement proportionnelle au rapport cyclique

    https://i58.servimg.com/u/f58/17/56/35/17/a211.jpg

    Nous avons réalisé notre propre amplificateur de courant qui s'appelle un hacheur abaisseur mais il est possible d'acheter un shield

    Il existe de nombreuses cartes pour Arduino pour commander des moteurs DC surtout de faibles puissances et aussi de grandes puissances comme on peut l'observer sur les liens suivants. 

    http://www.robotpower.com/products/MegaMotoPlus_info.html

    http://www.robotshop.com/en/dc-motor-driver-2-15a.html

    https://www.pololu.com/file/0J51/vnh3sp30.pdf

    https://i58.servimg.com/u/f58/17/56/35/17/a310.jpg

    mais, tous ces hacheurs shields mesurent le courant en interne mais il n'y a pas de limitation de courant. 

    Pour avoir une limitation de courant il faut une boucle de courant analogique en utilisant des AOP ou CI spécialisée ou une boucle de courant numérique rapide.

    Mais quel doit être la valeur du courant de limitation ?

    Le choix de la valeur du courant est normalement pour le Service de fonctionnement 1 heure pour pouvoir effectuée des montées relativement longue sans atteindre la température critique du moteur.

    Dans notre cas, le courant de limitation devra etre de 

    Imoteur limitation=Puissance/Ubatterie=500W/24 V=20A

    De plus, le transistor de puissance du hacheur ne peut supporter que 50A dans notre cas.

    Mais en boucle ouverte, il n'a pas de régulation de courant, pour ne pas avoir de dépassement du courant maximum, une rampe du rapport cyclique sera utilisé.

    Une routine d'interruption de 0.1 seconde sera utilisé pour faire la mesure de la tension est du courant (échantillon de mesure, sample ). Ce temps de sampler est arbitraire, mais ne permet pas d'être plus rapide que le temps de montée du courant car la constante de temps électrique du moteur étant de  L/R= 1.5ms.

    Le fonctionnement en boucle ouverte avec une rampe de 25.5s (8bit et routine d'interruption de 0.1s) permet de bien comprendre la problématique du fonctionnement d'une commande à moteur DC.

    l'affichage se fera seulement tous les 0.2s pour avoir une stabilité des chiffres à l’écran. De plus, un filtrage numérique, se fera sur le courant et la tension sur 4 valeurs donc sur 0.4s.

    '''Algo boucle ouverte'''

    Routine d'interruption toutes les 0.1S

    Lire tension et courant

    Boucle loop (scrutation des boutons poussoirs) 

    Si BP1=1 alors incrementer PWM

    Si BP2=1 alors décrementer PWM

    Si BP3=1 alors PWM=0

    Affichage des variables tous les 0.2s

    '''code'''

    {{

    // include the library code:

    #include

    #include

    #include

    #define SERIAL_PORT_LOG_ENABLE 1

    #define Led     13       // 13 pour la led jaune sur la carte

    #define BP1     30       // 30 BP1

    #define BP2     31       // 31 BP2           

    #define BP3     32       // 32 BP3

    #define LEDV    33       // 33 led

    #define LEDJ    34       // 34 led

    #define LEDR    35       // 35 led

    #define relay   36       // 36 relay

    #define PWM10    10      //11   timer2    

    LiquidCrystal lcd(27, 28, 25, 24, 23, 22); // RS=12, Enable=11, D4=5, D5=4, D6= 3, D7=2, BPpoussoir=26

    // Configuration des variables

    unsigned   int UmoteurF = 0;  // variable to store the value coming from the sensor

    unsigned   int Umoteur = 0;

    unsigned   int Umoteur2 = 0;

    unsigned   int Umoteur3 = 0;

    unsigned   int Umoteur4 = 0;

    unsigned   int ImoteurF = 0;  

    unsigned   int Imoteur = 0;

    unsigned   int Imoteur2 = 0;

    unsigned   int Imoteur3 = 0;

    unsigned   int Imoteur4 = 0;

    byte Rcy=0 ;    //rapport cyclique  8bit

    unsigned    int temps;

    // the setup function runs once when you press reset or power the board

    void setup() {

    pinMode(Led, OUTPUT);   //led carte arduino

    pinMode(LEDV, OUTPUT);

    pinMode(LEDR, OUTPUT);

    pinMode(LEDJ, OUTPUT);

    pinMode (PWM10,OUTPUT);     // broche (10) en sortie  timer2

    //  digitalWrite(LEDV,LOW);

    Timer1.initialize(100000);         // initialize timer1, and set a 0,1 second period =>  100 000

    Timer1.attachInterrupt(callback);  // attaches callback() as a timer overflow interrupt

    lcd.begin(20, 4);  

    Serial1.begin(9600); 

    TCCR2B = (TCCR2B & 0b11111000)
    r power the board<br /><br />void setup() {<br /><br />pinMode(Led, OUTPUT);   //led carte arduino<br /><br />pinMode(LEDV, OUTPUT);<br /><br />pinMode(LEDR, OUTPUT);<br /><br />pinMode(LEDJ, OUTPUT);<br /><br />pinMode (PWM10,OUTPUT);     // broche (10) en sortie  timer2<br /><br />//  digitalWrite(LEDV,LOW);<br /><br />Timer1.initialize(100000);         // initialize timer1, and set a 0,1 second period =>  100 000<br /><br />Timer1.attachInterrupt(callback);  // attaches callback() as a timer overflow interrupt<br /><br />lcd.begin(20, 4);  <br /><br />Serial1.begin(9600); <br /><br />TCCR2B = (TCCR2B & 0b11111000)</nowiki>)
  • Thermomètre infrarouge microbit  + (Rendez vous sur ce lien : https://makecodRendez vous sur ce lien : https://makecode.microbit.org/_Up33c2V57WXt *assurez-vous que votre microbit est connecté à votre ordinateur par un câble micro-USB. *vous devriez constater que le microbit est utilisé par votre ordinateur comme une clé USB *cliquez sur le bouton "Download" de MakeCode, un fichier .hex sera téléchargé. Glissez et déposez le fichier .hex sur le lecteur (ou copiez et collez le). *Pendant la transmission, le voyant orange au dos de la carte micro:bit se met à clignoter. Une fois quele clignottement s'arrête, le transfert est terminé. Voilà, maintenant nous pouvons voir si le microbite fonctionne comme nous l'espérons.
    e fonctionne comme nous l'espérons. <br/>)
  • 3D CAM sous Fusion 360  + (<nowiki>Avant de commencer la prograAvant de commencer la programmation du CAM, considérez votre pièce et la meilleure approche pour l'usiner. Ces décisions dépendent de la forme du modèle, des matériaux, et des contraintes de la machine CNC que vous utilisez. Dans cette étape, vous apprendrez comment ces facteurs impactent votre stratégie d'usinage en ce qui concerne la fixation (workholding), le référencement (registration, c'est-à-dire s'assurer que la CNC sache où se trouve la pièce, et les paramètres du CAM.

    Chemins d'outil 3D

    Dans un toolpath 2D (poche, contour, tracé, ...), la tête de la fraise reste à une profondeur fixe (axe Z) durant une passe d'usinage, et ne bouge que dans les directions X et Y pendant qu'elle coupe. Ce type d'usinage est idéal pour des pièces prismatiques, pour lesquelles toutes les faces usinées sont perpendiculaires à l'axe de la broche de la machine.

    Lors de la programmation de pièces non prismatiques, telles que des moules ou des formes organiques, les opérations 2D sont insuffisantes. Vous devez utiliser des opérations de CAM 3D, dans lesquelles la fraise se déplace de manière dynamique selon X, Y et Z.

    Serrage

    Le serrage (workholding) est la stratégie pour maintenir votre pièce de manière rigide pendant le processus d'usinage. Lors de la programmation avec des parcours d'outil 3D, la mise en oeuvre est une considération initiale importante. Cela est particulièrement vrai pour les pièces qui nécessitent un usinage des deux côtés, lorsque la pièce sera basculée entre les ''setups''. (programmes d'usinage)

    Pour la programmation de pièces prismatiques,où les CAM 2D et 2.5D requièrent uniquement un modèle de CAO de la pièce que vous souhaitez usiner, aucune fonctionnalité supplémentaire n'est présente pour la fixation ou le référencement . En effet, la pièce prend la forme d'un prisme rectangulaire, qui peut être facilement maintenu dans un étau ou fixé au martyr.

    Mais que faites-vous lorsque votre forme est plus organique ou irrégulière, et doit également être retournée à la machine des deux côtés? Dans ce cas, vous devez créer un matériau supplémentaire qui maintiendra votre pièce dans un étau, contre le martyr ou à plat contre le bas de la machine. Il est très difficile de programmer le CAM sans avoir ces fonctionnalités intégrées dans votre modèle.

    En d’autres termes, l’usinage 3D avec retournement nécessite que vous modélisiez la matière que vous souhaitez laisser ainsi que des onglets pour éviter que votre pièce ne se détache dans la machine. Ces onglets seront coupés et poncés après l'usinage, généralement avec une scie à ruban et une ponceuse à disque.

    Pour votre cuillère de service, vous aurez deux onglets - un à chaque extrémité - et un prisme rectangulaire qui tiendra la cuillère à plat après le retournement. Lors de la modélisation, il est préférable de créer ces suppléments en tant que corps (bodies) distincts de la pièce à usiner.

    Référencement

    Étant donné que la cuillère sera usinée des deux côtés (usinage par retournement), vous devez vous assurer que la machine à commande numérique peut localiser la pièce avec précision après son déplacement. Ceci s'appelle l'enregistrement.

    Si vous avez déjà utilisé Haas, vous savez utiliser une sonde pour localiser votre pièce. Cependant, comme beaucoup de routeurs de table, le DMS n’a pas de sonde. Lorsque vous utilisez le DMS pour localiser l’origine de votre système de coordonnées de travail (Work Home), vous insérez un outil dans la broche et vous le positionnez au bon endroit. Il est courant de coincer un morceau de papier entre le support et l’outil pour s’assurer que Z est correct. Dans la classe des machines DMS, vous apprendrez à saisir les codes pour configurer votre WCS de cette manière. Comme vous pouvez l’imaginer, ce système n’est pas précis, car vous ne faites que "regarder les yeux" de cet endroit.

    Cela implique de devoir considérer une manière d'aligner les deux côtés de la pièces précisément si elle doit s'usiner des deux côtés. Il y a plusieurs méthodes possibles, chacune avec ses avantages et ses inconvénients qui dépendent de la spécificité de la pièce à usiner. Parmi les méthodes les plus courantes: - Attacher des butées sur le martyr ou le lit de la fraiseuse, où ira se caler la pièce usinée. - Usiner un contour dans le martyr, pour ensuite placer la pièce à l'intérieur en serrage - forer des trous pouvant accueillir des "pins" en bois, dans la pièce à usiner et dans le martyr, pour les solidariser (le plus précis)

    La dernière méthode est celle que nous utiliserons pour la cuillère. Lors de l'usinage de la face avant, vous percerez également trois trous à travers le stock et partiellement à travers le martyr. Lors du retournement de la pièce, vous insérerez des tourillons dans ces trous afin d'aligner l'autre face parfaitement avec la première.

    Paramétrage du CAM Les spécificités du projet (usinage de bois sur une fraiseuse multi-outils) vont également déterminer certains choix lors de la programmation des chemins d'outil. En l'occurrence, l'usinage du bois ou du platique n'est pas un usinage rapide. Cela autorise l'utilisation de chemins d'outils adaptatifs pour le "dégrossage", mais vous ne pouvez pas utiliser toute la longueur de la fraise. Lors de l'usinage de bois ou de plastique, suivez la règle du chevauchement et de la profondeur de passe : le chevauchement et la profondeur de passe ne doivent jamais excéder 50% du diamètre de la fraise.
    utiliser toute la longueur de la fraise. Lors de l'usinage de bois ou de plastique, suivez la règle du chevauchement et de la profondeur de passe : le chevauchement et la profondeur de passe ne doivent jamais excéder 50% du diamètre de la fraise.</nowiki>)
  • Altère connecté  + (<nowiki>Téléchargez ce fichier:<dTéléchargez ce fichier:
    pieces.svg
    Si vous avez une découpe laser, vous pouvez passer a l'étape suivante.

    En revanche, si vous disposé d'une imprimante:

    Vous pouvez choisir la taille que vous voulez, en imprimant celle ci en A3 par exemple, ou en modifiant le fichier directement.


    Prenez en compte la taille du bois requise pour ce projet

    -text">Prenez en compte la taille du bois requise pour ce projet</div><br /></div></nowiki>)
  • E-Club  + ('''<u>Le produit</u>''': Il s'''Le produit''': Il s'agit du système d'accroche du club. Nous allons le coller avec de la glue sur le boitier. Le système se referme sur le club à l'aide de vis. '''Problèmes rencontrés''': Ce système d'accroche n'est valable que pour un seul diamètre de club. '''Lien vers le projet sur Fusion360''': http://a360.co/2IF5VpB '''Prix''': 0.04€ + 0.04€ = 0.08€(pour les deux parties de la boite) '''Temps''': 0h10min + 0h14min = 0h24min (pour les deux parties de la boite)ite) <u>'''Temps'''</u>: 0h10min + 0h14min = 0h24min (pour les deux parties de la boite))
  • Boite à Histoires  + ('''U'''tilisation du logiciel LaserCAD pou'''U'''tilisation du logiciel LaserCAD pour créer des ouvertures et configurer la découpeuse laser (“Cut” vitesse : 10 et puissance : 100 et "Engrave" vitesse : 300 et puissance : 30). '''M'''odifier à votre guise les ouvertures de la boite. '''D'''écouper les éléments sur des plaques de contreplaqué de 5mm.ts sur des plaques de contreplaqué de 5mm.)
  • Boite à Histoires  + ('''U'''tilisation du logiciel TinkerCAD afin de créer une pièce 3D faisant office de bouton poussoir pour activer l'imprimante Thermique.)
  • Dispositif de sécurité à enregistrement de zone de tir  + (Afin de valider le principe, j'ai réalisé Afin de valider le principe, j'ai réalisé une maquette constituée par un "fusil photographique" auquel j'ai adjoint le système de repérage de la ligne de visée (circuit BNO055 + carte Arduino + buzzer). '''Les photos 1 et 2''' montrent les différents éléments de cette maquette: 1) Un smart phone fixé sur le fusil en bois permet d'enregistrer ce que voit et entend le chasseur lors de l'enregistrement et lors de la phase de chasse. L'objectif du smartphone est situé à l'endroit où se trouve l’œil du chasseur. Cet objectif voit le guidon du fusil en même temps que l'endroit précis visé dans le paysage. 2) Le système de repérage inertiel de la ligne de visée se compose - d'un petit circuit imprimé portant l'unité de mesure inertielle BNO055 - d'une carte de contrôle (Arduino UNO) reliée au BNO055 par un petit câble (alimentation + interface I2C). 3) J'ai également ajouté un buzzer à cette carte. Ce buzzer produit tous les signaux sonores nécessaires pour le suivi de l'enregistrement et de la phase de chasse. '''Nota:''' A l'origine j'aurais souhaité allonger la liaison I2C de façon que seul le petit circuit imprimé du BNO055 se trouve fixé au fusil, la carte de contrôle étant logée dans une poche de veste. Malheureusement la liaison I2C supporte mal l'allongement de la liaison. Pour un développement futur il faudrait donc plutôt utiliser la liaison UART du circuit.lutôt utiliser la liaison UART du circuit.)
  • Chapeau de marin en denim recyclé  + (Le symbole de flèche veux dire que habitueLe symbole de flèche veux dire que habituellement, cette pièce serait coupée sur le plis du tissu. Pour me faciliter la tâche, j'ai "ouvert" les pièces de patron, c'est à dire que je les ai tracés sur une feuille blanche, et j'ai fixé la copie à l'originale à l'aide de ruban gommé.pie à l'originale à l'aide de ruban gommé.)
  • Bentolux a code  + ('''Matériaux :''' *contreplaqué de peupli'''Matériaux :''' *contreplaqué de peuplier 3mm 800*500mm (pour 2 boîtes) *colle à bois *serre-joint *Filament PLA pour les supports écran OLED et LCD (cf fichier joint) *tapis de découpe (pour garder un plan de travail propre) '''Electronique''' : *Une carte Arduino Uno *4 borniers wago *Un moteur solenoide 6 volts *Un keypad 4x3 *Un écran LCD *Un connecteur de pile 9V *Une diode 1N4004 *Une résistance de 2,2k (ou 1k) *Un transistor TIP102 *Un anneau 12 LED neopixel '''Machines :''' * Découpeuse laser Perez Camp 13/90 * Imprimante 3D Creality ender3 '''Logiciels''' : * Tinkercad * Arduino IDE * Ultimaker Cura* Tinkercad * Arduino IDE * Ultimaker Cura)
  • Sérigraphie avec un pochoir de vinyle  + (L'image que vous choisirez sera en lien diL'image que vous choisirez sera en lien direct avec la difficulté du projet. Voici quelques facteurs à prendre en considération lorsque vous choisirez l'image à imprimer. Lors de la création de votre image, gardez en tête que nous créons un pochoir: il faudra que l'extérieur soit d'une seule pièce. '''Il est impossible d'avoir une forme dans une autre, car le centre sera perdu.''' Pour écrire cherchez une typographie pour pochoir (Stencil typo). De nombreuses œuvres sont créés pour des pochoirs, n'hésitez pas à vous en inspirer! Assurez-vous de sélectionner une image d'une seule couleur qui pourra être vectorisé à l'étape suivante. pourra être vectorisé à l'étape suivante.)
  • Chauffage solaire version ardoise  + ('''Remarque''': Ici, le cadre est dimensio'''Remarque''': Ici, le cadre est dimensionné pour accueillir une vitre de 1m x 2m par 6mm d'épaisseur, un fond en contreplaqué filmé de 10mm et une couche isolante de 22mm en STEICO. Les dimensions seront donc à adapter en fonction des disponibilités de chacun. * Préparer 2 chevrons de section 93mm x 45mm et de 209 cm de longueur. * Préparer 2 chevrons de section 93mm x 45mm et de 109 cm de longueur. * Préparer 2 liteaux de section 20mm x 53mm et de 209 cm de longueur. * Préparer 2 liteaux de section 20mm x 53mm et de 109 cm de longueur. * Coller à la colle PU et visser les liteaux sur les chevrons associés une face de 93mm d'épaisseur, à 32mm d'un des bords. '''Remarque''': Ces 32mm correspondent à l'épaisseur isolant + contreplaqué filmé. Il reste 8mm sur l'autre bord afin d'accueillir l'épaisseur de la vitre et d'un joint compribande. * Découper les angles de chaque profilé bois ainsi obtenu à 45° en portant bien l'attention sur le sens de la découpe. La coupe se fait sur la longueur de 93mm. '''Remarque''': Cette coupe permet de retrouver la dimension 1m x 2m de la vitre en intérieur du cadre. * Assembler le cadre à l'aide de colle PU et de longues vis à bois dans chacun des 4 angles.ngues vis à bois dans chacun des 4 angles.)
  • Chauffage solaire version ardoise  + ('''Remarque''': Ici, le cadre est dimensio'''Remarque''': Ici, le cadre est dimensionné pour accueillir une vitre de 1m x 2m par 6mm d'épaisseur, un fond en contreplaqué filmé de 10mm et une couche isolante de 22mm en STEICO. Les dimensions seront donc à adapter en fonction des disponibilités de chacun. * Préparer 2 chevrons de section 93mm x 45mm et de 209 cm de longueur. * Préparer 2 chevrons de section 93mm x 45mm et de 109 cm de longueur. * Préparer 2 liteaux de section 20mm x 53mm et de 209 cm de longueur. * Préparer 2 liteaux de section 20mm x 53mm et de 109 cm de longueur. * Coller à la colle PU et visser les liteaux sur les chevrons associés une face de 93mm d'épaisseur, à 32mm d'un des bords. '''Remarque''': Ces 32mm correspondent à l'épaisseur isolant + contreplaqué filmé. Il reste 8mm sur l'autre bord afin d'accueillir l'épaisseur de la vitre et d'un joint compribande. * Découper les angles de chaque profilé bois ainsi obtenu à 45° en portant bien l'attention sur le sens de la découpe. La coupe se fait sur la longueur de 93mm. '''Remarque''': Cette coupe permet de retrouver la dimension 1m x 2m de la vitre en intérieur du cadre. * Assembler le cadre à l'aide de colle PU et de longues vis à bois dans chacun des 4 angles.ngues vis à bois dans chacun des 4 angles.)
  • Imprimer un objet avec ULTIMAKER  + ('''Traduire le fichier dans un format lisible par le logiciel CURA''' * Sous l'onglet fichier sélectionner : '''''exporter''''' *Dans la fenêtre '''choisir''' le type : **STL Mesh ('''*.stl''' '''*.ast''') **Alias Mesh ('''*.obj''') '''Enregistrer''')
  • Imprimer un objet avec ULTIMAKER  + ('''Traduire le fichier dans un format lisible par le logiciel CURA''' * Sous l'onglet fichier sélectionner : '''''exporter''''' *Dans la fenêtre '''choisir''' le type : **STL Mesh ('''*.stl''' '''*.ast''') **Alias Mesh ('''*.obj''') '''Enregistrer''')
  • Caisson d'ordinateur  + ('''Support en Bois''' * 300mm x 320mm x 1'''Support en Bois''' * 300mm x 320mm x 18mm * 300mm x 240mm x 18mm '''Coffrage Face A''' * 300mm x 260mm x 90mm '''Ventilateur carte mère''' * 80mm x 80mm '''Ventilateur sortie''' * 90 mm x 90mm '''Coffrage Face B''' * 305mm x 263mm x 90mm '''“Cratère”''' * 103.6mm x 90.9mm x 15mm'''“Cratère”''' * 103.6mm x 90.9mm x 15mm)
  • Caisson d'ordinateur  + ('''Support en Bois''' * 300mm x 320mm x 1'''Support en Bois''' * 300mm x 320mm x 18mm * 300mm x 240mm x 18mm '''Coffrage Face A''' * 300mm x 260mm x 90mm '''Ventilateur carte mère''' * 80mm x 80mm '''Ventilateur sortie''' * 90 mm x 90mm '''Coffrage Face B''' * 305mm x 263mm x 90mm '''“Cratère”''' * 103.6mm x 90.9mm x 15mm'''“Cratère”''' * 103.6mm x 90.9mm x 15mm)
  • Sérigraphie par émulsion photographique  + ('''Un écran de sérigraphie''' L'écran est'''Un écran de sérigraphie''' L'écran est composé d'un tissu tendu sur un cadre de bois ou d'aluminium. J'utiliserai ici un tissu avec du 110 mailles (fil par pouces). Les tissus à mailles élevés (200 - 300) impriment avec plus de précision, mais laissent passer moins d'encre. Les tissus aux mailles de 85 à 150 impriment moins de détails, mais laissent une couche raisonnable d'encre, utile pour créer une impression opaque. '''Une source de lumière (ampoule survoltée ou source de soleil direct)''' '''Une raclette''' '''Du ruban gommé''' '''Une feuille d'acétate transparente''' '''De l'encre de sérigraphie''' Attention a choisir l'encre idéale pour votre projet (Si vous imprimez sur tissu, choisissez une encre pour tissu). '''Un kit d'émulsion photographique''' Ce kit comporte 3 bouteilles (dans l'image je n'ai que les deux bouteilles blanches). Le produit ne dure que 4 mois avant de devoir être jeté, et devra être conservé au réfrigérateur. (voir étape 4: préparer un kit d'émulsion photographique) '''Un accès à un lavabo''' ...Et tout ce qu'il faut pour nettoyer: savon, linge à vaisselle, éponge. '''Une chambre noire''' Une pièce sans fenêtre bien ventilée.'' Une pièce sans fenêtre bien ventilée.)
  • IBaby : bracelet électronique pour bébé en plastique  + ( * '''Description''' : pour la première ve * '''Description''' : pour la première version de notre bracelet, nous avons décidé de réaliser le bracelet de la montre en filament souple avec un système de fixation similaire à celui d'une montre pour enfant. Ce bracelet sera adapté à la taille du poignet d'un bébé. En ce qui concerne le cadran de la montre, il sera réalisé en filament dur et plein à l'intérieur pour simuler la présence de la carte électronique que nous n'avons pas encore. Les deux modules de cette version se visseront ensemble grâce à un système de thread. Cliquez [http://a360.co/2pqrm5X ici] pour accéder à la première version de notre prototype * '''Préparation pour l'impression''' : pour convertir le fichier 3D (qui est sous le format stl) en fichier compréhensible par l'imprimante 3D on va utiliser le logiciel ''Ultimaker Cura'' qui va générer un fichier gcode. Les réglages à appliquer pour les deux pièces sont les suivants : ** Machine : Prusa i3 Mk2 ** Matériel : CPE ** Hauteur de la couche : 0.20 mm ** Hauteur initiale de la couche : 0.15 mm ** Temps d'impression du bracelet : 25 min ** Poids de matière utilisé : 3g ** Temps d'impression du cadran : 17 min ** Poids de matière utilisé : 2g
    Pour le positionnement des pièces dans Cura, nous vous conseillons de placer le bracelet à plat et le cadran un peu en biais comme vous pouvez le voir sur la photo afin d'éviter que le support ajouté par Cura abime trop les pièces
    * '''Problèmes rencontrés :''' Nous avons rencontré des problèmes à différents niveaux de notre prototype, les voici : ** Le fermoir n'est pas très opérationnel, c'est-à-dire que le crochet rentre correctement dans les différents trous du bracelet (le choix de la taille est donc possible) après l'avoir un peu coupé. Cependant le crochet ne tient pas assez dans les trous. ** Lorsque nous attachons le bracelet, le contour du cadran se plie à, cause de sa fine épaisseur et du filament flex. Ainsi en ajoutant la partie pleine du cadran à l'intérieur du contour, celui-ci a tendance à sauter. ** La fine couche en dessous du contour du cadran s'est mal imprimée et ne nous permettra pas de soutenir le cadran qui contiendra notre carte électronique. *'''Solutions à envisager :''' ces solutions seront réalisées lors de la prochaine version **Tout d'abord pour des raisons pratiques, il faudrait que le prototype soit adapté à la morphologie d'un adulte afin que les tests de notre carte électronique soient facilités. **Il faudrait changer le système de fermeture, nous avons pensé à utiliser des aimants au lieu du crochet et des trous. **Il faudrait séparer le bracelet du contour du cadran afin que ce dernier ne soit plus tordu lors de la fermeture du bracelet.
    contour du cadran afin que ce dernier ne soit plus tordu lors de la fermeture du bracelet. )
  • Utilisation CNC Shopbot  + ( * '''Lunette de protection''' * '''Casque anti-bruit''' * '''Aspiration''' * '''Être vigilant, et toujours être à coté de la machine''' )
  • Presse à Chaud  + ( # Appuyez sur le bouton "MODE" une fois, # Appuyez sur le bouton "MODE" une fois, l'info "SET" clignote. Appuyez sur la flèche gauche pour diminuer et la flèche droite pour augmenter la température initiale. # Appuyez sur le bouton "MODE" une seconde fois, "TEMP" clignote. réglez la température maximum. # Appuyez sur le bouton "MODE" une troisième fois, "TIME" clignote, réglez le temps # Appuyez sur le bouton "MODE" une quatrième fois, les réglages sont finis, la machine se met en fonction. sont finis, la machine se met en fonction. )
  • Presse à Chaud  + ( * Allumez l'interrupteur et l'affichage vous montrera la température. * Réglez la température et le temps en suivant le tableau : )
  • Bois Cousu  + (Il est plus simple de commencer par une foIl est plus simple de commencer par une forme carré. Mais vous pouvez rapidement fabriquer différents meubles, boite, bibliothèque, caisson, meuble de cuisine ou de salle de bain, etc... On pourra terminer par une couche de peinture pour embellir ou laisser le bois brut s'il a été bien préparé et poncé à l'avance.il a été bien préparé et poncé à l'avance.)
  • Bois Cousu  + (Il est plus simple de commencer par une foIl est plus simple de commencer par une forme carré. Mais vous pouvez rapidement fabriquer différents meubles, boite, bibliothèque, caisson, meuble de cuisine ou de salle de bain, etc... On pourra terminer par une couche de peinture pour embellir ou laisser le bois brut s'il a été bien préparé et poncé à l'avance.il a été bien préparé et poncé à l'avance.)
  • Découpage Vinyle  + (<div class="icon-instructions caution-i
    Étape importante Enregistrer le fichier en *.hpgl (Fichier HP Graphics Language) Ensuite renommer votre fichier en *.plt
    er HP Graphics Language) Ensuite renommer votre fichier en *.plt</div> </div>)
  • Découpage Vinyle  + (<div class="icon-instructions caution-i
    Étape importante Enregistrer le fichier en *.hpgl (Fichier HP Graphics Language) Ensuite renommer votre fichier en *.plt
    er HP Graphics Language) Ensuite renommer votre fichier en *.plt</div> </div>)
  • Fixations d'étagères invisibles  + (Réaliser la pose et vérifier les niveaux (photo 03a,b,c))
  • Fixations d'étagères invisibles  + (Réaliser la pose et vérifier les niveaux (photo 03a,b,c))
  • Porte ceintres escamotable  + ( * Scier les deux éléments coulissants du * Scier les deux éléments coulissants du manche à balais télescopique pour assurer la profondeur du dressing et permettre de fermer la porte. *Ebavurer *Bouchonner l'extrémité du tube coulissant *Fixer les deux supports de barre de rideaux *Introduire le porte cintres dans les deux supports et le bloquer. *Le porte cintres est opérationnel. loquer. *Le porte cintres est opérationnel. )
  • RainMan Clémence.F  + ( * Branchez les trois fils de couleur sur le moteur: - le fil orange dans le trou "9∼" - le fil rouge dans le trou "5V" - le fil marron dans le trou "GND" )
  • Utilisation Basique du laser trotec Speedy 400  + ( * Utiliser un logiciel de dessin vectorie * Utiliser un logiciel de dessin vectoriel. Nous utilisons principalement Inkscape (libre ET gratuit) * Utiliser des couleurs différentes en fonction du travail à effectuer ** Rouge : découpe (RVB 255.0.0 ou FF0000) ** Noir : gravure (RVB 0.0.0 ou 000000) ** Bleu : marquage (RVB 0.0.255 ou 0000FF) * Les traits de découpe et marquage doivent être de 0.1 px (0.08 pt sous illustrator) t être de 0.1 px (0.08 pt sous illustrator) )
  • Comment usiner une pièce avec une défonceuse cnc en toute securite  + ( * Ouvrir logiciel ArtCAM Pro * cree un nouveau modele * inserer le fichier "dxf " creer avec autocad )
  • FoldaRap 2.5 : imprimante 3D facilement transportable  + ( * pied-avant-gauche: http://reprap.org/wi * pied-avant-gauche: http://reprap.org/wiki/File:Foot-front-left.png * pied-avant-droite: http://reprap.org/wiki/File:Foot-front-rightt.png * pied-arrière-droite: http://reprap.org/wiki/File:Foot-front-left.png * pied-arrière-gauche: http://reprap.org/wiki/File:Foot-front-rightt.png * charnière-intérieur-gauche: http://reprap.org/wiki/File:FR2-5-hinge-inner-left.png * charnière-intérieur-droite: http://reprap.org/wiki/File:FR2-5-hinge-inner-right.png p.org/wiki/File:FR2-5-hinge-inner-right.png )
  • FoldaRap 2.5 : imprimante 3D facilement transportable  + ( * pied-avant-gauche: http://reprap.org/wi * pied-avant-gauche: http://reprap.org/wiki/File:Foot-front-left.png * pied-avant-droite: http://reprap.org/wiki/File:Foot-front-rightt.png * pied-arrière-droite: http://reprap.org/wiki/File:Foot-front-left.png * pied-arrière-gauche: http://reprap.org/wiki/File:Foot-front-rightt.png * charnière-intérieur-gauche: http://reprap.org/wiki/File:FR2-5-hinge-inner-left.png * charnière-intérieur-droite: http://reprap.org/wiki/File:FR2-5-hinge-inner-right.png p.org/wiki/File:FR2-5-hinge-inner-right.png )
  • Imprimante 3D - Ultimaker 2  + ( * Ouvrir Cura * Cura est gratuit, disponible en ligne )
  • Badge Tour  + ( *Imprimante 3D (Pla ou PolySmooth / colle *Imprimante 3D (Pla ou PolySmooth / colle ou laque / Tournevis très fin / Spatule) *Laser (plexiglas couler opaque de couleur, colle pour plastique type BOSTIK 1220) *Plotter de découpe (vinyle de la même couleur que votre impression 3D) *Logiciels (Fusion 360, Insckape, Cura, DrawCut Lite) (Fusion 360, Insckape, Cura, DrawCut Lite) )
  • BENTO BOX - SPACE FLAN  + (<nowiki><div class="mw-highlight
    //   Variables qui ne peuvent être modifiées,
    const int buttonPin = 2; // Bouton poussoir
    const int ledPin = 7; // Anneau NeoPixel Ring 12 LED RGB


    // Bibliothèque urilisée pour écran OLED
    #include

    // =======================
    // Paramètrages écran OLED
    // =======================
    #define nombreDePixelsEnLargeur 128 // Taille de l'écran OLED, en pixel, au niveau de sa largeur
    #define nombreDePixelsEnHauteur 64 // Taille de l'écran OLED, en pixel, au niveau de sa hauteur
    #define brocheResetOLED -1 // Reset de l'OLED partagé avec l'Arduino (d'où la valeur à -1, et non un numéro de pin)
    #define adresseI2CecranOLED 0x3C // Adresse de "mon" écran OLED sur le bus i2c (généralement égal à 0x3C ou 0x3D)
    Adafruit_SSD1306 ecranOLED(nombreDePixelsEnLargeur, nombreDePixelsEnHauteur, &Wire, brocheResetOLED);

    // ================
    // Image à afficher
    // ================
    #define largeurDeLimage 128 // Largeur de l'image à afficher, en pixels
    #define hauteurDeLimage 64 // Hauteur de l'image à afficher, en pixels

    const unsigned char imageAafficher [] PROGMEM = {
    // Logo SPACE FLAN (image BITMAP / LCD Assistant / Editeur de texte / https://passionelectronique.fr/ecran-oled-i2c-arduino/)
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x03, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0xf0, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe0, 0xf0, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc4, 0x73, 0x83, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0e, 0x77, 0x03, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x06, 0xf7, 0x39, 0xe7, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x06, 0x63, 0xff, 0x30, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x26, 0x73, 0xff, 0xe0, 0xe4, 0x3f, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf8, 0xe6, 0xff, 0xff, 0xe6, 0x67, 0x1f, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xec, 0xff, 0xff, 0xe6, 0x67, 0x87, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xc7, 0xcc, 0xff, 0xff, 0xfe, 0x77, 0xe3, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0x9f, 0xcc, 0xff, 0xff, 0xfe, 0x33, 0xf1, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0xd9, 0xff, 0xff, 0xfe, 0x33, 0xfc, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xfe, 0x7f, 0x99, 0x7f, 0xff, 0xfe, 0x33, 0xfe, 0x7f, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0x99, 0x7f, 0xff, 0xff, 0x3b, 0xff, 0x3f, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xf9, 0xff, 0x9a, 0x7f, 0xff, 0xf9, 0x19, 0xff, 0x1f, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xf3, 0xff, 0xb2, 0x77, 0xff, 0x79, 0x19, 0xff, 0x9f, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xf3, 0xff, 0x32, 0x67, 0xff, 0x39, 0x1d, 0xff, 0xcf, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xe7, 0xff, 0x32, 0xe7, 0xdf, 0x39, 0x9d, 0xff, 0xef, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xcf, 0xff, 0x74, 0xe7, 0xdf, 0x3d, 0x8c, 0xff, 0xe7, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xcf, 0xfe, 0x64, 0xe7, 0xdf, 0x3d, 0x8c, 0xff, 0xf7, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xdf, 0xfe, 0x64, 0xe7, 0xdf, 0x3c, 0x8e, 0xff, 0xf3, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x9f, 0xfe, 0x64, 0xe7, 0xdf, 0x3c, 0x86, 0x7f, 0xf3, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x9f, 0xfc, 0xed, 0xef, 0xdf, 0xbc, 0xc6, 0x7f, 0xf9, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xbf, 0xfc, 0xc9, 0xcf, 0xdf, 0xbc, 0xc7, 0x3f, 0xf9, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x3f, 0xf1, 0xc9, 0xcf, 0x9f, 0x9e, 0xc7, 0x1f, 0xf9, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x3f, 0xe3, 0xc9, 0xcf, 0x9f, 0x9e, 0xc3, 0x8f, 0xfd, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7f, 0xc7, 0xdb, 0xcf, 0x9f, 0x9e, 0x63, 0xe7, 0xfd, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7f, 0x8f, 0x93, 0xcf, 0x9f, 0x9e, 0x63, 0xf3, 0xfd, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7f, 0x1f, 0x93, 0xcf, 0x9f, 0x9e, 0x63, 0xf9, 0xfd, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7f, 0x3f, 0x93, 0xdf, 0x9f, 0x9e, 0x63, 0xfc, 0xfd, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7e, 0x7f, 0xb7, 0xdf, 0x9f, 0x9f, 0x73, 0xfc, 0xfd, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7c, 0xff, 0xa7, 0x9f, 0x9f, 0x9f, 0x33, 0xfe, 0x7d, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7c, 0xff, 0x87, 0x9f, 0x9f, 0x9f, 0x33, 0xfe, 0x7d, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x79, 0xff, 0x87, 0x9f, 0x9f, 0x9f, 0x33, 0xff, 0x3d, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x79, 0xff, 0xe7, 0x9f, 0x9f, 0xdf, 0x23, 0xff, 0x3d, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x7b, 0xff, 0xe7, 0x9f, 0x9f, 0xdf, 0x07, 0xff, 0x9d, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x73, 0xff, 0xe7, 0xbf, 0x9f, 0xdf, 0x8f, 0xff, 0x9d, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x33, 0xff, 0xe3, 0x3f, 0x9f, 0xcf, 0x9f, 0xff, 0xc9, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0x87, 0xff, 0xf0, 0x3f, 0x9f, 0xcf, 0x3f, 0xff, 0xc1, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf8, 0xfc, 0x3f, 0x9f, 0xcc, 0x3e, 0x3f, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf2, 0x7f, 0x9f, 0x9f, 0xc0, 0x7c, 0x9f, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0xff, 0xc0, 0x0f, 0x01, 0xfc, 0xcf, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x8f, 0xe0, 0x00, 0x3f, 0xee, 0x67, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x8f, 0xfd, 0xe0, 0x7f, 0xc3, 0x37, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x27, 0xff, 0xff, 0xff, 0x93, 0xb3, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x64, 0x7f, 0xff, 0xfb, 0x99, 0x99, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xfe, 0xe4, 0x69, 0x3f, 0xff, 0xcb, 0xdd, 0xcc, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xfe, 0x0c, 0x0b, 0x3c, 0x47, 0x89, 0xcc, 0xe6, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0x1c, 0x13, 0x30, 0xc7, 0x9d, 0xec, 0x77, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xf3, 0x73, 0xdf, 0x9c, 0xe0, 0x73, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0xe7, 0x67, 0xdf, 0xdc, 0xe3, 0x7f, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0xe2, 0x6f, 0xdf, 0xc6, 0xe3, 0x3f, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0xe0, 0xcf, 0xdf, 0xc6, 0x7b, 0xbf, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xec, 0x4f, 0xcf, 0xce, 0x79, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcc, 0xcf, 0xc7, 0xcf, 0x7d, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xdd, 0xcf, 0xc7, 0xef, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0xe7, 0xdf, 0xef, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xdf, 0xe7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xc7, 0xe7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0xc7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
    };

    // Array of all bitmaps for convenience. (Total bytes used to store images in PROGMEM = 1040)
    const int epd_bitmap_allArray_LEN = 1;

    //******************************** Routine pour afficheur LCD **************************

    #if (SSD1306_LCDHEIGHT != 64)
    #endif


    // ANNEAU RING LED 12 PIXELS
    #include
    #define PIN 7

    // Parameter 1 = number of pixels in strip
    // Parameter 2 = pin number (most are valid)
    // Parameter 3 = pixel type flags, add together as needed:
    // NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
    // NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
    // NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
    // NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
    Adafruit_NeoPixel strip = Adafruit_NeoPixel(12, PIN, NEO_GRB + NEO_KHZ800);


    // Module sonore wtv020m01
    // boolean déclare une variable de type binaire
    boolean buttonWasUp = true;
    boolean ledEnabled = false;

    const int clockPin = 6; // clockpin sur la broche 6
    const int dataPin = 9; // datapin sur la broche 9
    const int resetPin = 3; // resetpin sur la broche 3

    const unsigned int VOLUME_7 = 0xFFF7; //unsigned = variable entière non signée

    const unsigned int PLAY_PAUSE = 0xFFFE;
    const unsigned int STOP = 0xFFFF;


    void setup()
    {

    Serial.begin(9600); //Initialise la communication entre le PC et Arduino


    // Initialisation de l'écran OLED
    if(!ecranOLED.begin(SSD1306_SWITCHCAPVCC, adresseI2CecranOLED))
    while(1); // Arrêt du programme (boucle infinie) en cas d'échec de l'initialisation


    // Affichage d'une image au centre de l'écran
    ecranOLED.clearDisplay(); // Effaçage de la mémoire tampon de l'écran OLED

    ecranOLED.drawBitmap(
    (ecranOLED.width() - largeurDeLimage ) / 2, // Position de l'extrême "gauche" de l'image (pour centrage écran, ici)
    (ecranOLED.height() - hauteurDeLimage) / 2, // Position de l'extrême "haute" de l'image (pour centrage écran, ici)
    imageAafficher,
    largeurDeLimage,
    hauteurDeLimage,
    WHITE); // "couleur" de l'image

    ecranOLED.display(); // Transfert de la mémoire tampon à l'écran OLED, pour affichage



    {
    // LedPin en sortie
    pinMode(ledPin, OUTPUT);
    // Bouton poussoir en entrée
    pinMode(buttonPin, INPUT);
    }

    {
    strip.begin();
    strip.setBrightness(255); //adjust brightness here, maximum à 255
    strip.show(); // Initialize all pixels to 'off'
    }

    pinMode(clockPin, OUTPUT);
    pinMode(dataPin, OUTPUT);
    pinMode(resetPin, OUTPUT);

    digitalWrite(clockPin, HIGH); // aucune différence si je le met en HIGH ou LOW
    digitalWrite(dataPin, LOW);

    // reset the module (si les 2 lignes dessous retirer le son ne s'allume qu'une fraction de secondes)
    digitalWrite(resetPin, HIGH);
    delay(100);

    sendCommand(VOLUME_7); // Empéche le son de se répèter, si enlevé le son est en boucle

    }

    void loop()
    {


    // Programme de lumière LED de 12 secondes
    colorWipe(strip.Color(255, 255, 255), 84); // Blanc
    colorWipe(strip.Color(255, 0, 0), 84); // Rouge
    colorWipe(strip.Color(255, 255, 255), 84); // Blanc
    colorWipe(strip.Color(255, 0, 0), 84); // Rouge
    colorWipe(strip.Color(255, 255, 255), 84); // Blanc
    colorWipe(strip.Color(255, 0, 0), 84); // Rouge
    colorWipe(strip.Color(255, 255, 255), 84); // Blanc
    colorWipe(strip.Color(255, 0, 0), 84); // Rouge
    colorWipe(strip.Color(255, 255, 255), 84); // Blanc
    colorWipe(strip.Color(255, 0, 0), 84); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge
    colorWipe(strip.Color(255, 255, 255), 5); // Blanc
    colorWipe(strip.Color(255, 0, 0), 5); // Rouge


    colorWipe(strip.Color(0, 0, 0), 5); // Eteindre

    while (1);
    }

    // Remplir les points l’un après l’autre avec une couleur (si supprimé, système de points ne fonctionne plus)
    void colorWipe(uint32_t c, uint8_t wait)
    {
    for(uint16_t i=0; i<strip.numPixels(); i++) {
    strip.setPixelColor(i, c);
    strip.show();
    delay(wait);
    }
    }

    uint32_t Wheel(byte WheelPos) // je ne sais pas à quoi ça sert

    {
    // lecture son "0000.wav"
    sendCommand(0x0001);
    }

    void sendCommand(int addr) {
    digitalWrite(clockPin, LOW);
    delay(2);
    for (int i=15; i>=0; i--)
    {
    delayMicroseconds(50);
    if((addr>>i)&0x0001 >0)
    {
    digitalWrite(dataPin, HIGH);
    //Serial.print(1);
    }
    else
    {
    digitalWrite(dataPin, LOW);
    // Serial.print(0);
    }
    delayMicroseconds(50);
    digitalWrite(clockPin, HIGH);
    delayMicroseconds(50);

    if(i>0)
    digitalWrite(dataPin, LOW);
    else
    digitalWrite(dataPin, HIGH);
    delayMicroseconds(50);

    if(i>0)
    digitalWrite(clockPin, LOW);
    else
    digitalWrite(clockPin, HIGH);
    delay(20);
    }

    }
    </span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Blanc</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Rouge</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Blanc</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Rouge</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Blanc</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Rouge</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Blanc</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Rouge</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Blanc</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Rouge</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Blanc</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Rouge</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Blanc</span><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Rouge</span><br /> <br /><br /> <span class="n">colorWipe</span><span class="p">(</span><span class="n">strip</span><span class="p">.</span><span class="n">Color</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">5</span><span class="p">);</span> <span class="c1">// Eteindre</span><br /> <br /> <span class="k">while</span> <span class="p">(</span><span class="mi">1</span><span class="p">);</span><br /><span class="p">}</span><br /> <br /><span class="c1">// Remplir les points l’un après l’autre avec une couleur (si supprimé, système de points ne fonctionne plus)</span><br /><span class="kr">void</span> <span class="nf">colorWipe</span><span class="p">(</span><span class="kr">uint32_t</span> <span class="n">c</span><span class="p">,</span> <span class="kr">uint8_t</span> <span class="n">wait</span><span class="p">)</span><br /><span class="p">{</span><br /> <span class="k">for</span><span class="p">(</span><span class="kr">uint16_t</span> <span class="n">i</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">i</span><span class="o"><</span><span class="n">strip</span><span class="p">.</span><span class="n">numPixels</span><span class="p">();</span> <span class="n">i</span><span class="o">++</span><span class="p">)</span> <span class="p">{</span><br /> <span class="n">strip</span><span class="p">.</span><span class="n">setPixelColor</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">c</span><span class="p">);</span><br /> <span class="n">strip</span><span class="p">.</span><span class="n">show</span><span class="p">();</span><br /> <span class="nf">delay</span><span class="p">(</span><span class="n">wait</span><span class="p">);</span><br /> <span class="p">}</span><br /><span class="p">}</span><br /> <br /><span class="kr">uint32_t</span> <span class="nf">Wheel</span><span class="p">(</span><span class="kr">byte</span> <span class="n">WheelPos</span><span class="p">)</span> <span class="c1">// je ne sais pas à quoi ça sert </span><br /><br /> <span class="p">{</span><br /> <span class="c1">// lecture son "0000.wav"</span><br /> <span class="n">sendCommand</span><span class="p">(</span><span class="mh">0x0001</span><span class="p">);</span><br /> <span class="p">}</span><br /><br /><span class="kr">void</span> <span class="nf">sendCommand</span><span class="p">(</span><span class="kr">int</span> <span class="n">addr</span><span class="p">)</span> <span class="p">{</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">clockPin</span><span class="p">,</span> <span class="kr">LOW</span><span class="p">);</span><br /> <span class="nf">delay</span><span class="p">(</span><span class="mi">2</span><span class="p">);</span><br /> <span class="k">for</span> <span class="p">(</span><span class="kr">int</span> <span class="n">i</span><span class="o">=</span><span class="mi">15</span><span class="p">;</span> <span class="n">i</span><span class="o">>=</span><span class="mi">0</span><span class="p">;</span> <span class="n">i</span><span class="o">--</span><span class="p">)</span><br /> <span class="p">{</span> <br /> <span class="nf">delayMicroseconds</span><span class="p">(</span><span class="mi">50</span><span class="p">);</span><br /> <span class="k">if</span><span class="p">((</span><span class="n">addr</span><span class="o">>></span><span class="n">i</span><span class="p">)</span><span class="o">&</span><span class="mh">0x0001</span> <span class="o">></span><span class="mi">0</span><span class="p">)</span><br /> <span class="p">{</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">dataPin</span><span class="p">,</span> <span class="kr">HIGH</span><span class="p">);</span><br /> <span class="c1">//Serial.print(1);</span><br /> <span class="p">}</span><br /> <span class="k">else</span><br /> <span class="p">{</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">dataPin</span><span class="p">,</span> <span class="kr">LOW</span><span class="p">);</span><br /> <span class="c1">// Serial.print(0);</span><br /> <span class="p">}</span><br /> <span class="nf">delayMicroseconds</span><span class="p">(</span><span class="mi">50</span><span class="p">);</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">clockPin</span><span class="p">,</span> <span class="kr">HIGH</span><span class="p">);</span><br /> <span class="nf">delayMicroseconds</span><span class="p">(</span><span class="mi">50</span><span class="p">);</span><br /> <br /> <span class="k">if</span><span class="p">(</span><span class="n">i</span><span class="o">></span><span class="mi">0</span><span class="p">)</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">dataPin</span><span class="p">,</span> <span class="kr">LOW</span><span class="p">);</span><br /> <span class="k">else</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">dataPin</span><span class="p">,</span> <span class="kr">HIGH</span><span class="p">);</span><br /> <span class="nf">delayMicroseconds</span><span class="p">(</span><span class="mi">50</span><span class="p">);</span><br /> <br /> <span class="k">if</span><span class="p">(</span><span class="n">i</span><span class="o">></span><span class="mi">0</span><span class="p">)</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">clockPin</span><span class="p">,</span> <span class="kr">LOW</span><span class="p">);</span><br /> <span class="k">else</span><br /> <span class="nf">digitalWrite</span><span class="p">(</span><span class="n">clockPin</span><span class="p">,</span> <span class="kr">HIGH</span><span class="p">);</span><br /> <span class="nf">delay</span><span class="p">(</span><span class="mi">20</span><span class="p">);</span> <br /> <span class="p">}</span><br /> <br /> <span class="p">}</span><br /></pre></div></nowiki>)
  • Tab2Lux  + (Source : https://syskb.com/lecteur-audio-Source : https://syskb.com/lecteur-audio-raspberry-pi-dac/#A4 Temps estimé : 30 minutes en comptant le téléchargement d’une image de 600 MB #Téléchargez la [http://www.runeaudio.com/download/ dernière version de RuneAudio]. Notez que si vous avez un vieux Raspberry Pi, ça le fait !
    #Insérez votre carte Micro SD sur votre PC.
    #Téléchargement d'Etcher : En effet, Etcher est extrêmement simple à utiliser. On le télécharge, l’installe et on le lance. L'avantage de ce logiciel, c'est qu'il peut utiliser une ISO zippé sans devoir la décompresser
    > On choisit l'ISO (1) puis la carte SD de destination (2) et enfin, on lance l'installation (3).
    #Une fois l’installation terminée insérez la carte SD dans le RPi.
    br/> #Une fois l’installation terminée insérez la carte SD dans le RPi. <br/>)
  • Multi-console Raspberry pi 3/zeroW + Tuto PITFT 2.8/3.5/ect  + (- Pour formater la MicroSd rien de plus simple ouvrir SdFormatter -1- Choisir ça MicroSd normalement reconnu auto -2- Puis click sur '''Format''' et voila!! votre MicroSd et bien formater pour recevoir RetroPie.)
  • RainMan 4  + (Utiliser le tournevis plat pour visser le moteur sur la plaque en bois, puis assembler les plaques en plastique du haut, du bas et des côtés de manière à pouvoir garder un accès à l'intérieur et au moteur.)
  • RainMan 4  + (Utiliser le tournevis plat pour visser le moteur sur la plaque en bois, puis assembler les plaques en plastique du haut, du bas et des côtés de manière à pouvoir garder un accès à l'intérieur et au moteur.)
  • Plotter de découpe - Caméo Silouhette  + (Préparation de la machine : * Allumage : le bouton situé à droite de la Caméo)
  • BlindTouch : Nina  + (-Prenez le tournes vis plat afin de visser le moteur sur le support en bois -Assemblez tout les parties du socle à l'aide de scotch et de colle , Placez la plaque du moteur en haut.)
  • Little Umbrella by Hyades  + (-Faites passer le fil de fer dans le socle-Faites passer le fil de fer dans le socle à coté du bouchon et plantez la tige du parapluie dans le liège. -Accrochez le fil de fer à l'hélice du moteur. Il y a des accroches sur l'hélice prévu à cet effet . - Tentez une simulation sur le logiciel, le parapluie doit s'ouvrir en restant en place sur le liège. Ressayer l'opération tant que le parapluie ne reste pas fixé au liège. -Placez la carte Arduino à l'intérieur de la boite, en faisant passer le câble USB par le trou prévu à cet effet. -Vous pouvez alors fermez la boit et la solidifier avec du scotch.z la boit et la solidifier avec du scotch.)
  • Little Umbrella by Hyades  + (-Faites passer le fil de fer dans le socle-Faites passer le fil de fer dans le socle à coté du bouchon et plantez la tige du parapluie dans le liège. -Accrochez le fil de fer à l'hélice du moteur. Il y a des accroches sur l'hélice prévu à cet effet . - Tentez une simulation sur le logiciel, le parapluie doit s'ouvrir en restant en place sur le liège. Ressayer l'opération tant que le parapluie ne reste pas fixé au liège. -Placez la carte Arduino à l'intérieur de la boite, en faisant passer le câble USB par le trou prévu à cet effet. -Vous pouvez alors fermez la boit et la solidifier avec du scotch.z la boit et la solidifier avec du scotch.)
  • TomBot  + (- Souder deux jumpers aux deux pattes arge- Souder deux jumpers aux deux pattes argentées (un par patte) de l'interrupteur. Attention, la dorée est pour la LED (figure 6). - Souder l'un des fils de l'interrupteur au fil noir du support de pile 9v (figure 6). - Souder un troisième jumper au fil rouge du support de pile 9v (figure 6). - Connecter le jumper de l'interrupteur libre à l'un des GND de l'Arduino et celui du support de pile à VIN (figure 7 et 8).  - Brancher la pile 9v et mettre l'interrupteur sur la position on. Vérifier que les LEDs de l'Arduino s'allument bien et éteindre l'interrupteur.'allument bien et éteindre l'interrupteur.)
  • TomBot  + (- Souder deux jumpers aux deux pattes arge- Souder deux jumpers aux deux pattes argentées (un par patte) de l'interrupteur. Attention, la dorée est pour la LED (figure 6). - Souder l'un des fils de l'interrupteur au fil noir du support de pile 9v (figure 6). - Souder un troisième jumper au fil rouge du support de pile 9v (figure 6). - Connecter le jumper de l'interrupteur libre à l'un des GND de l'Arduino et celui du support de pile à VIN (figure 7 et 8).  - Brancher la pile 9v et mettre l'interrupteur sur la position on. Vérifier que les LEDs de l'Arduino s'allument bien et éteindre l'interrupteur.'allument bien et éteindre l'interrupteur.)
  • Créer une application avec Lora32u4 pour The Things Network  + (1 - Télécharger les fichiers [http://bsfra1 - Télécharger les fichiers [http://bsfrance.fr/documentation/11355_LORA32U4II/driver_windows.zip Driver windows] et [http://bsfrance.fr/documentation/11355_LORA32U4II/BSFrance.zip Arduino Hardware folder] sur la page [https://bsfrance.fr/lora-long-range/1345-LoRa32u4-II-Lora-LiPo-Atmega32u4-SX1276-HPD13-868MHZ-EU-Antenna.html BSFrance] 2 - Pour les drivers, il suffit de dézipper et de cliquer sur adafruit_drivers.exe. Parmi la liste des drivers proposés, il faut choisir Feather32u4 3 - Bon, là, normalement, il est possible de brancher la carte sur le port USB de l'ordinateur.
    Il est possible que vous ayez le message que l'installation du pilote n'a pas été possible. Pas de panique, on y reviendra
    3 - Pour les fichiers Arduino, il faut le dézipper dans le répertoire Mes Documents/Arduino/hardware (ce qui est le répertoire par défaut de l'installation de l'environnement Arduino, mais peut-être différent suivant votre installation. si le sous-répertoire hardware n'existe pas, créez le. Cette bibliothèque sert à gérer le microcontrôleur AT Mega32u4 de la carte. 4 - Démarrez l'IDE Arduino. Vous devriez pouvoir trouver la carte dans le menu Outils > Type de carte > LoRa32u4II 868 5 - Dans l'environnement Arduino, à ce stade on sélectionne le port par le menu Outils > Port, mais s'il y a eu l'erreur d'installation de pilote précédemment mentionnée, le port n'apparait pas. Il faut appuyer sur le bouton reset de la carte et sélectionner à nouveau, dans le laps de temps du reset, le menu Outils > Port. Là normalement le port devrait apparaitre quelques instants et on peut le sélectionner. 6 - Il reste encore à installer un bibliothèque : la bibliothèque LMIC qui contient les fichiers pour le protocole LoraWan. Pour cela il y a 2 méthodes : Méthode 1 : * La première est d'aller dans le menu Croquis > Inclure une bibliothèque > Gérer les bibliothèques. * Dans la barre de recherche, du gestionnaire de bibliothèque, tapez "lmic"
    Si vous ne voyez rien apparaitre, vérifiez que les listes déroulantes Type et Sujet soient bien sur "Tout"
    * Choisissez d'installer le bibliothèque IBM LMIC Framework Méthode 2 : * Téléchargez l'archive du projet GitHub https://github.com/matthijskooijman/arduino-lmic dans le répertoire Mes Documents/Arduino/Libraries. Vous devriez avoir un répertoire arduino-lmic-master 7 - Lorsque cette bibliothèque est bien installée, vous pouvez choisir dans le menu Fichier > Exemples > LMIC-Arduino le sketch ttn-otaa
    Pour faire court, la différence entre les sketches ttn-abp et ttn-otaa vient des deux différentes façon de s'enregistrer sur le réseau The Thing Network (par enregistrement, je parle de l'échange qui a lieu entre notre carte et la passerelle TTN lors de la mise sous tension de la carte) La première est l'Activation By Personalization (ou abp) pour laquelle il faut avoir une adresse réseau de la carte appelée DevAddr) La seconde est l'Over-The-Air-Activation (ou otaa). Dans ce mode DevAddr est transmis automatiquement pendant la phase d'enregistrement.
    (ou abp) pour laquelle il faut avoir une adresse réseau de la carte appelée DevAddr) La seconde est l'Over-The-Air-Activation (ou otaa). Dans ce mode DevAddr est transmis automatiquement pendant la phase d'enregistrement.</div> </div>)
  • RainMan 5  + (1) A l'aide du tournevis plat, vissez le m1) A l'aide du tournevis plat, vissez le moteur sur la plaque de bois. 2) Assemblez la plaque avec le moteur et le socle en liège avec les autres plaques. Placez la plaque du moteur en haut, veillez bien à ce que le socle en liège soit en haut. Assemblez-la avec deux autres plaques en plastique placées sur les côtés. Puis finissez avec la plaque du bas. 3) Afin de tout solidifier, fixez le tout avec de la colle et du scotch.xez le tout avec de la colle et du scotch.)
  • Escape super 2  + (1- Prendre deux mur n°2 et les fixer avec1- Prendre deux mur n°2 et les fixer avec des visses sur une planche n°1 de 33*38*1 à 1cm des bores puis prendre un mur n°2 et les visser au bous de la planche comme sur l'image n°1 2- Percer des troue de environ 15mm à 1 cm comme sur l'image n°2 et 3 et les coller sur la plateforme de base 3- Prendre deux mur n°2 et les fixer grâce au tourbillon sur une planche n°1 de 30*38*1 à 1cm des bores comme sur l'image n°2 et 3 4- Mettre 2 tourbillon n°7 au bout de la planche avec une profondeur de 15mm afin de coller le mur n°4 à la planche qui possède 2 mur n°2 comme sur l'image n°4 puis faire la même chose avec l'autre planche n°1 de 33*38*1 et le mur n°3 afin d'obtenir le résultat final d'assemblage sur l'image n°5 5- Mettre les 5 morceaux de bois sous la planche grâce a la colle à bois afin de la surélever leurs position est libre image n°6rélever leurs position est libre image n°6)
  • La boite à Quiz  + (1- Utilisation du site http://carrefour-n1- Utilisation du site http://carrefour-numerique.cite-sciences.fr/fablab/wiki/doku.php?id=projets:generateur_de_boites afin de créer et concevoir les boites Les boites de jeux : L65 Xl65XH65 La boite principale : L100Xl100XH100 2- Finition du fichier .svg à l'aide d'un logiciel de dessin vectoriel ( Inkscape) Nous y avons ajouté : - un espace afin de pouvoir loger le bouton poussoir sur TOUTES les boites. - sur les boites de jeux nous avons ajouté deux espaces afin de pouvoir faire passer les fils. - sur la boite de commande nous avons ajouté 8 espaces afin de pouvoir faire passer les fils dans chaque boitier de jeu. 3- Fabrication des boites Nous avons ensuite utilisé une découpeuse laser afin d'obtenir les boites.écoupeuse laser afin d'obtenir les boites.)
  • Bouton de serrage d'une scie repliable  +
  • Plante connectée  + (Nous allons faire le montage en utilisant Nous allons faire le montage en utilisant la sortie digital (Broche 3 – D0) du capteur. Cette sortie serait connectée sur l’entrée Digital 4 du Arduino. Pour le branchement de la LED nous allons réutiliser le principe du montage « Allumer une LED » avec la sortie Digital 3 du Arduino.
    La programmation du montage est assez proche de celle utilisée avec un simple bouton. On paramètre les entrées (Capteur) et sorties (LED) du Arduino dans la fonction setup. Si l’entrée lue correspondant au capteur est à l’état haut (HIGH) on allume la LED. Si l’entrée lu est à l’état bas, on éteint la LED.
    const int L1 = 2; // broche 2 du micro-contrôleur se nomme maintenant : L1 const int plante = 3; // broche 3 du micro-contrôleur se nomme maintenant : plante void setup() // fonction d'initialisation de la carte { // contenu de l'initialisation pinMode(L1, OUTPUT); // L1 est une broche de sortie pinMode(plante, INPUT); // plante est une broche d entree } void loop() // fonction principale, elle se repete (s execute) a l'infini { // contenu du programme int humide = digitalRead(plante); // Lecture de l etat du capteur if(humide == HIGH) // Si le capteur est a l etat haut { digitalWrite(L1, HIGH); // Allumer L1 } else // Sinon { digitalWrite(L1, LOW); // Eteindre L1 } delay(1000); // Attendre 1 seconde }
    non { digitalWrite(L1, LOW); // Eteindre L1 } delay(1000); // Attendre 1 seconde })
  • Plante connectée  + (Nous allons faire le montage en utilisant Nous allons faire le montage en utilisant la sortie digital (Broche 3 – D0) du capteur. Cette sortie serait connectée sur l’entrée Digital 4 du Arduino. Pour le branchement de la LED nous allons réutiliser le principe du montage « Allumer une LED » avec la sortie Digital 3 du Arduino.
    La programmation du montage est assez proche de celle utilisée avec un simple bouton. On paramètre les entrées (Capteur) et sorties (LED) du Arduino dans la fonction setup. Si l’entrée lue correspondant au capteur est à l’état haut (HIGH) on allume la LED. Si l’entrée lu est à l’état bas, on éteint la LED.
    const int L1 = 2; // broche 2 du micro-contrôleur se nomme maintenant : L1 const int plante = 3; // broche 3 du micro-contrôleur se nomme maintenant : plante void setup() // fonction d'initialisation de la carte { // contenu de l'initialisation pinMode(L1, OUTPUT); // L1 est une broche de sortie pinMode(plante, INPUT); // plante est une broche d entree } void loop() // fonction principale, elle se repete (s execute) a l'infini { // contenu du programme int humide = digitalRead(plante); // Lecture de l etat du capteur if(humide == HIGH) // Si le capteur est a l etat haut { digitalWrite(L1, HIGH); // Allumer L1 } else // Sinon { digitalWrite(L1, LOW); // Eteindre L1 } delay(1000); // Attendre 1 seconde }
    non { digitalWrite(L1, LOW); // Eteindre L1 } delay(1000); // Attendre 1 seconde })
  • Analyseur d'air ambiant  + (<br/> <table class="wikitable">
    Matériel Liens Prix
    Capteur d'analyse de qualité d'air [https://www.gotronic.fr/art-capteur-de-qualite-d-air-grove-101020078-23838.htm Grove – Air quality sensor] 8,70€
    Capteur de poussière [https://www.gotronic.fr/art-detecteur-de-poussiere-grove-101020012-18980.htm Grove - Dust Sensor] 13,25€
    Capteur température- humidité [https://www.gotronic.fr/art-capteur-d-humidite-et-de-t-grove-101020019-18964.htm Grove - Temperature&Humidity Sensor Pro(DHT22)] 11,40€
    Interface Arduino-capteurs [https://www.gotronic.fr/art-module-grove-base-shield-103030000-19068.htm Grove Base Shield] 4,80€
    Ecran [https://nextion.tech/datasheets/nx4832k035/ Nextion NX4832K035] 34,85€
    Câble 4 contacts [https://www.gotronic.fr/art-lot-de-5-cables-grove-20-cm-19054.htm Câble Grove 4 contacts] 3,20
    Jumper [https://www.kubii.fr/site-entier/1593-fils-jumper-male-femelle-200mm-40-fils-kubii-3272496003989.html?search_query=jumper&results=24 Câble Jumper Mâle/Femelle] 2,90€
    Panneau de bois [https://www.leroymerlin.fr/produits/menuiserie/panneau-bois-tablette-etagere-tasseau-moulure-et-plinthe/panneau-bois-agglomere-mdf/panneau-bois-recoupable/panneau-medium-mdf-naturel-ep-3-mm-x-l-244-x-l-122-cm-67458552.html Panneau MDF 3mm] 4,32€
    s-kubii-3272496003989.html?search_query=jumper&results=24 Câble Jumper Mâle/Femelle] </td><td>2,90€ </td></tr><tr> <td>Panneau de bois </td><td>[https://www.leroymerlin.fr/produits/menuiserie/panneau-bois-tablette-etagere-tasseau-moulure-et-plinthe/panneau-bois-agglomere-mdf/panneau-bois-recoupable/panneau-medium-mdf-naturel-ep-3-mm-x-l-244-x-l-122-cm-67458552.html Panneau MDF 3mm] </td><td>4,32€ </td></tr></table>)
  • Filet à ichtyoplancton - simple arceau  + (<div class="icon-instructions idea-icon
    si vous avez pu récupérer un patron (carton au format de la maille découpée), tracer directement cette forme sur la maille.
    Utilisez un feutre indélébile pour tracer sur la maille.
    Pour chaque étape,regarder la photo correspondante sur la gauche
    Étape 0) Tracer le point A au milieu du petit coté, et A' au milieu de l'autre petit coté. Tracer le segment AA' Étape 1) Marquer le point C sur ce segment, pour que AC = 147,5 cm Étape 2) A l'aide d'un "compas" (un marqueur au bout d'une ficelle) tracer l'arc CB=78,5cm Puis avec la même technique, tracer l'arc AB=167cm A l'intersection des deux arcs: marquer le point B Faire de même de l'autre côté, pour marquer B' Étape 3) Avec la même technique, tracer l'arc BB', de 167cm de rayon (=AB=AB') Étape 4) Faire de même pour l'arc DD' avec un rayon AD=AD'=35cm Étape 5) Marquer ensuite une bordure de 3cm de large de chaque côté. Ces 2 bordures seront cousues ensuite l'une sur l'autre pour fermer le côte et former le filet à la bonne taille.
    de large de chaque côté. Ces 2 bordures seront cousues ensuite l'une sur l'autre pour fermer le côte et former le filet à la bonne taille.)
  • Filet à ichtyoplancton - simple arceau  + (<div class="icon-instructions idea-icon
    si vous avez pu récupérer un patron (carton au format de la maille découpée), tracer directement cette forme sur la maille.
    Utilisez un feutre indélébile pour tracer sur la maille.
    Pour chaque étape,regarder la photo correspondante sur la gauche
    Étape 0) Tracer le point A au milieu du petit coté, et A' au milieu de l'autre petit coté. Tracer le segment AA' Étape 1) Marquer le point C sur ce segment, pour que AC = 147,5 cm Étape 2) A l'aide d'un "compas" (un marqueur au bout d'une ficelle) tracer l'arc CB=78,5cm Puis avec la même technique, tracer l'arc AB=167cm A l'intersection des deux arcs: marquer le point B Faire de même de l'autre côté, pour marquer B' Étape 3) Avec la même technique, tracer l'arc BB', de 167cm de rayon (=AB=AB') Étape 4) Faire de même pour l'arc DD' avec un rayon AD=AD'=35cm Étape 5) Marquer ensuite une bordure de 3cm de large de chaque côté. Ces 2 bordures seront cousues ensuite l'une sur l'autre pour fermer le côte et former le filet à la bonne taille.
    de large de chaque côté. Ces 2 bordures seront cousues ensuite l'une sur l'autre pour fermer le côte et former le filet à la bonne taille.)
  • Roland camm-1 GR-420 - Tutoriel basique  + (<div class="icon-instructions info-icon
    Img 1 : L'épaisseur maximum pour le matériel à travailler est de 2 mm
    Img 2 : L'aire maximale pour la découpe est de 1,075 mm x 24,998 mm
    gt; <div class="icon-instructions-text">Img 2 : L'aire maximale pour la découpe est de 1,075 mm x 24,998 mm</div> </div>)
  • Thermoformeuse Formech 450DT  + (<div class="icon-instructions info-icon
    Dimensions de formage : 430 x 280mm Taille de la feuille : 450 x 300 mm Profondeur max. de formage : 160 mm Épaisseur max. de la feuille : 6mm Zone de chauffe : 4 Type de chauffe : Quartz
    e la feuille : 6mm Zone de chauffe : 4 Type de chauffe : Quartz</div> </div>)
  • Thermoformeuse Formech 450DT  + (<div class="icon-instructions info-icon
    Dimensions de formage : 430 x 280mm Taille de la feuille : 450 x 300 mm Profondeur max. de formage : 160 mm Épaisseur max. de la feuille : 6mm Zone de chauffe : 4 Type de chauffe : Quartz
    e la feuille : 6mm Zone de chauffe : 4 Type de chauffe : Quartz</div> </div>)
  • Atelier nichoir  + (<div class="icon-instructions info-icon
    Si vous êtes un particulier, attendez d'avoir vos personnalisations pour les lancer en même temps que la découpe à l'étape 6
    *Tester vos paramètre de découpe, de marquage et de gravage dans du contre-plaqué de 6mm. **Suivre la [https://wikifab.org/images/c/c0/Atelier_nichoir_legende_plan_nichoir.svg][https://wikifab.org/images/1/14/Atelier_nichoir_legende_plan_nichoir2.svg Atelier_nichoir_legende_plan_nichoir2.svg] pour paramétrer la laser *Découper le document "[https://wikifab.org/images/c/c2/Atelier_nichoir_2020.03.23_plan_nichoir.svg Atelier_nichoir_2020.03.23_plan_nichoir.svg]" *Garder la contre forme de la plaque
    Atelier_nichoir_2020.03.23_plan_nichoir.svg]" *<u>Garder la contre forme de la plaque</u>)
  • Roland camm-1 GR-420 - Tutoriel basique  + (<div class="icon-instructions info-icon
    Img 1 : L'épaisseur maximum pour le matériel à travailler est de 2 mm
    Img 2 : L'aire maximale pour la découpe est de 1,075 mm x 24,998 mm
    gt; <div class="icon-instructions-text">Img 2 : L'aire maximale pour la découpe est de 1,075 mm x 24,998 mm</div> </div>)
  • Bartop Arcade 2 joueurs  + (Boutiques faboulousarcade http://ebay.to/2Boutiques faboulousarcade http://ebay.to/2gKd1zy Cette étape est la plus longue et fastidieuse du tuto. Armez-vous donc de patience, car c'est tout ce dont vous aurez besoin à cette étape. Rien n'est compliqué dans ces branchements mais je vous conseille toutefois de repérer chaque boutons y compris ceux des joysticks (haut, bas, gauche et droite) à l'arrière du panel. Cela vous facilitera grandement la tâche lorsque vous raccorderez le tout. La première étape consiste à relier tous les boutons entre eux à l'aide d'un câble commun. Partez donc du connecteur (commun) d'un des boutons et reliez le au suivant et ainsi de suite. Pour finir, branchez la dernière cosse sur un des ports GROUND de l'interface USB ou du Raspberry Pi. Il y plusieurs solutions pour connecter les boutons et les joysticks sur un Raspberry pi : utiliser une interface USB (souvent vendu avec le kit) ou les ports GPIOs du Raspberry Pi. Dans mon cas, j'ai utilisé l'interface USB et ai raccordé le tout au Raspberry pi. Une fois que tous les boutons et joysticks sont reliés au port GROUND par un câble commun, il suffit de relier chacun des boutons au port correspondant sur le Raspberry ou l'interface USB. Le plus compliqué dans cette étape, c'est de réussir à faire quelque chose de propre. En effet, essayez de ne pas faire passer les câbles trop près des joysticks pour éviter d'en couper un !!! Vidéo pour mieux comprendre : https://www.youtube.com/watch?v=x6Ry4bOWcR8 Pour ceux qui utilisent les ports GPIO du Raspberry, il faut penser à activer les ports GPIO dans le fichier de configuration. Recalbox possède un outil de configuration avancée nommé recalbox.conf qui vous permet de modifier des options qui ne sont pas disponibles dans emulationstation. Pour le modifier, allez dans le dossier de recalbox partagé sur le réseau local. Le fichier recalbox.conf est disponible dans le répertoire nommé system. Dans recalbox.conf, activez le pilote GPIO en réglant controllers.gpio.enabled sur 1 : controllers.gpio.enabled=1 et vous êtes prêt à jouer !gpio.enabled=1 et vous êtes prêt à jouer !)
  • Bartop Arcade 2 joueurs  + (Boutiques faboulousarcade http://ebay.to/2Boutiques faboulousarcade http://ebay.to/2gKd1zy Cette étape est la plus longue et fastidieuse du tuto. Armez-vous donc de patience, car c'est tout ce dont vous aurez besoin à cette étape. Rien n'est compliqué dans ces branchements mais je vous conseille toutefois de repérer chaque boutons y compris ceux des joysticks (haut, bas, gauche et droite) à l'arrière du panel. Cela vous facilitera grandement la tâche lorsque vous raccorderez le tout. La première étape consiste à relier tous les boutons entre eux à l'aide d'un câble commun. Partez donc du connecteur (commun) d'un des boutons et reliez le au suivant et ainsi de suite. Pour finir, branchez la dernière cosse sur un des ports GROUND de l'interface USB ou du Raspberry Pi. Il y plusieurs solutions pour connecter les boutons et les joysticks sur un Raspberry pi : utiliser une interface USB (souvent vendu avec le kit) ou les ports GPIOs du Raspberry Pi. Dans mon cas, j'ai utilisé l'interface USB et ai raccordé le tout au Raspberry pi. Une fois que tous les boutons et joysticks sont reliés au port GROUND par un câble commun, il suffit de relier chacun des boutons au port correspondant sur le Raspberry ou l'interface USB. Le plus compliqué dans cette étape, c'est de réussir à faire quelque chose de propre. En effet, essayez de ne pas faire passer les câbles trop près des joysticks pour éviter d'en couper un !!! Vidéo pour mieux comprendre : https://www.youtube.com/watch?v=x6Ry4bOWcR8 Pour ceux qui utilisent les ports GPIO du Raspberry, il faut penser à activer les ports GPIO dans le fichier de configuration. Recalbox possède un outil de configuration avancée nommé recalbox.conf qui vous permet de modifier des options qui ne sont pas disponibles dans emulationstation. Pour le modifier, allez dans le dossier de recalbox partagé sur le réseau local. Le fichier recalbox.conf est disponible dans le répertoire nommé system. Dans recalbox.conf, activez le pilote GPIO en réglant controllers.gpio.enabled sur 1 : controllers.gpio.enabled=1 et vous êtes prêt à jouer !gpio.enabled=1 et vous êtes prêt à jouer !)
  • Bentolux -horloge  + (<u>'''Structure :'''</u> envo'''Structure :''' envoyez à découper le fichier .svg (vous pouvez personnaliser votre bento en modifiant le fichier avant découpe) puis montez la bento selon la notice de montage présente dans les fichier joints. '''Electronique :''' suivez le plan de montage du premier arduino, prévoyez que les câbles "gnd "sortant de l'alimentation et "vin" relié à l'intérupteur doivent aussi être brancher sur le deuxième arduino présent au 3ème étage. '''Arduino :''' le fichier du code arduino 1 est joint.> étage. '''<u>Arduino :</u>''' le fichier du code arduino 1 est joint.)
  • Bentolux - BentoGhooost  + (= Fabrication 3ème étage = 1. Fabrication = Fabrication 3ème étage = 1. Fabrication à la découpeuse laser. * Plan à télécharger : [https://wikifab.org/images/d/df/BentoGhost_volume1.svg BentoGhost_volume1.svg] (clic droit / enregistrer le fichier sous) 2. Découpage et collage des morceaux * Bien penser à supprimer les écritures permettant d'identifier les faces avant la découpe * Bois utilisé : contreplaqué peuplier 3 mm * Réglages utilisés sur la PerezCamp 140 W ** puissance max : 40 % ** puissance min : 30 % ** vitesse : 40 mm / s * L'assemblage est expliqué avec les photos BentoGhost02 à BentoGhost04 ** Coller les éléments avec de la colle à bois * ''Le plancher qui supporte le mécanisme est décrit à l'étape suivante'' 3. Découpe des fantômes, dans du plexiglas 3 mm * Plan à télécharger : [https://wikifab.org/images/b/b9/BentoGhost_fantomes.svg BentoGhost_fantomes.svg] (clic droit / enregistrer le fichier sous) * Remarque : les 4 fantômes découpés dans la boite sont en haut de dessin, mais vous pouvez sélectionner ceux que vous voulez à partir du moment où ils sont de la même forme que ceux de la boîte * L'assemblage est expliqué avec les photos BentoGhost05 à BentoGhost07 ** Remarque : les fantômes peuvent également être collés à la colle à bois. Il faut bien les nettoyer tout de suite pour ne pas avoir de résidus de colle sur le plexiglas.voir de résidus de colle sur le plexiglas.)
  • Contrôleur Midi avec des boutons d'arcade et un RPi Pico  + (= Un contrôleur MIDI DIY = Fabriquer votre= Un contrôleur MIDI DIY = Fabriquer votre propre contrôleur midi avec Circuit Python! Cet instrument Midi à la "Midi Fighter" a 16 boutons équipés de LED, un écran OLED (de 128x128 pixels) et un joystick. Jouer de la batterie, du synthé ou n'importe quoi en utilisant la norme MIDI! Toute l'électronique est logé dans un boitier enclipsable. = Boutons et Leds = Le Raspberry PI Pico a bien assez de GPIO pour connecter des boutons sur une grille de 4x4. L'expandeur de GPIO / Driver de LED AW9525 permet de rajouter les 16 LED et les connectent au Raspberry Pi Pico à travers le protocole I2C. Les LED s'allument quand les boutons sont appuyés, mais elles sont toutes contrôlable individuellement.
    = Modifier les notes à la volée = La spécificité de ce contrôleur Midi est de pouvoir changer les notes grâce à l'écran et au joystick. Parfait pour créer ses propres kits et faire ses propres mélodies.
    = Interface Intuitive = L'écran OLDED affiche les 16 boutons, comme des cercles avec des nombres. Ces nombres corresponds au notes MIDI assigné à chaque bouto. Utiliser le joystick pour sélectionner un bouton et éditer la note midi. Dans le mode édition, le bouton se met à clignoter, afin de savoir qu'il est actif. Les autres boutons restent actif afin de comparer les notes. = Une poignée pivotable = La poignée est imprimé en une fois avec aucun support, elle marche aussi très bien comme support pour incliner légèrement l'instrument.
    e support pour incliner légèrement l'instrument. <br/>)
  • Biodigesteur domestique  + (==== Dimensionnement ==== Pour une bonne d==== Dimensionnement ==== Pour une bonne digestion, à 38°C, la matière organique doit passer 30 jours dans le biodigesteur. Nous allons dimensionner le volume du digesteur en fonction des apports réguliers et de cette durée. Prenons un exemple : l’apport périodique est de 2 litres par jour, la matière devant rester au moins 30 jours, il faut un digesteur de 60 litres minimum. ==== Réalisation ==== C’est dans le digesteur qu’a lieu la dégradation bactérienne. Pour avoir une production de méthane il faut des bactéries méthanogènes. Celle-ci se développent en absence d’oxygène, on parle d’un milieu anaérobique. Pour priver la matière organique d’oxygène il suffit de l’immerger dans l’eau. * Faire deux trous en vis-à-vis dans le bidon digesteur. Ils doivent être au tiers de la hauteur, * Insérer un passe-paroi matière préalablement graissé dans chacun des deux trous, * Graisser l’intérieur des passe-parois matière, * Positionner une plaque à l’intérieur du digesteur faisant la séparation entre l’entrée et la sortie. En laissant passer la matière au-dessous et au-dessus elle augmente le parcours de la matière et donc le temps de digestion minimum, * Faire un trou dans l’opercule du couvercle pour installer un passe paroi gaz, * Installer un passer un passe-paroi gaz au centre de l’opercule d’étanchéité du couvercle. Du téflon sur les filets et un joint plat de chaque côté permettent d’étanchéifier le montage, * Enduire de graisse la collerette de l’opercule et refermer le couvercle, la graisse fait l’étanchéité, le couvercle maintient la pression, * Installer une vanne après le passe-paroi gaz.taller une vanne après le passe-paroi gaz.)
  • Biodigesteur domestique  + (==== Dimensionnement ==== Pour une bonne d==== Dimensionnement ==== Pour une bonne digestion, à 38°C, la matière organique doit passer 30 jours dans le biodigesteur. Nous allons dimensionner le volume du digesteur en fonction des apports réguliers et de cette durée. Prenons un exemple : l’apport périodique est de 2 litres par jour, la matière devant rester au moins 30 jours, il faut un digesteur de 60 litres minimum. ==== Réalisation ==== C’est dans le digesteur qu’a lieu la dégradation bactérienne. Pour avoir une production de méthane il faut des bactéries méthanogènes. Celle-ci se développent en absence d’oxygène, on parle d’un milieu anaérobique. Pour priver la matière organique d’oxygène il suffit de l’immerger dans l’eau. * Faire deux trous en vis-à-vis dans le bidon digesteur. Ils doivent être au tiers de la hauteur, * Insérer un passe-paroi matière préalablement graissé dans chacun des deux trous, * Graisser l’intérieur des passe-parois matière, * Positionner une plaque à l’intérieur du digesteur faisant la séparation entre l’entrée et la sortie. En laissant passer la matière au-dessous et au-dessus elle augmente le parcours de la matière et donc le temps de digestion minimum, * Faire un trou dans l’opercule du couvercle pour installer un passe paroi gaz, * Installer un passer un passe-paroi gaz au centre de l’opercule d’étanchéité du couvercle. Du téflon sur les filets et un joint plat de chaque côté permettent d’étanchéifier le montage, * Enduire de graisse la collerette de l’opercule et refermer le couvercle, la graisse fait l’étanchéité, le couvercle maintient la pression, * Installer une vanne après le passe-paroi gaz.taller une vanne après le passe-paroi gaz.)
  • Remise à neuf Game Boy  + (A l'aide d'un petit tournevis cruciforme A l'aide d'un petit tournevis cruciforme démontez l'ancien boitier et retirez aussi la carte électronique. A l'aide d'une soufflette, nettoyez la poussière si besoin . L'assemblage de la nouvelle coque se fait facilement à l'aide de la visserie fournie. Coque: https://www.amazon.fr/Timorn-Bo%C3%AEtier-remplacement-Gameboy-Console/dp/B01N1HZ55W/ref=sr_1_7?__mk_fr_FR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=boitier+game+boy&qid=1607429750&sr=8-7mp;keywords=boitier+game+boy&qid=1607429750&sr=8-7)
  • Module détecteur d'humidité du sol pour plantes  + (Soudez le fil rouge de la led sur la pin indiquée Soudez le fil noir de la led sur la pin indiquée)
  • Remplacer un chauffe eau  + (Assemblez le socle de votre nouveau chauffe-eau en emboîtant les montants dans les emplacements prévus à cet effet puis posez-le au plus près des tuyaux.)
  • Capteur de CO2 connecté  + (Afin de mener à bien ce montage, il est néAfin de mener à bien ce montage, il est nécessaire de disposer des éléments suivants : * Un capteur de dioxyde de carbone, ou "CO2" de type "[https://revspace.nl/MH-Z19B MH-Z19B]", disponible par exemple sur aliexpress (item/32823821163). * Un microcontrôleur avec connexion WiFi de type ESP8266 "Wemos D1 Pro" comme l'item 32653918483 sur aliexpress (la carte complète) * Le firmware '''[https://tasmota.github.io/docs/ Tasmota]''' pour faire fonctionner le microcontrôleur. * Une alimentation USB, de type "chargeur de téléphone" * Un câble USB permettant de connecter le microcontrôleur au PC qui de pouvoir effectuer les configurations. * Une plateforme web permettant d'enregistrer et d'afficher les données. Il est possible d'en installer une chez soi avec le '''système [https://my.inizisoft.net/grav/enez enez]'''. Un tuto sera bientôt disponible pour expliquer comment monter une telle plateforme. Des services de ce type sont aussi disponibles sur Internet, comme par exemple [https://mydevices.com/ Cayenne]. exemple [https://mydevices.com/ Cayenne].)
  • Bentolux - B350  + (Afin de s'assurer du bon placement des éléments, j'ai décidé de modéliser grossièrement les moteurs ou boutons à placer.)
  • Démarrage CNC MEKANIKA  + (Allumer la multiprise L'écran s'allume Appuyer ensuite sur le bouton ON/OFF situé à l’arrière du boitier électronique. L'ordinateur démarre et affiche le système. Démarrer Planet CNC)
  • Tuto "Utilisation de Trotec"  + (Ouvrir le logiciel '''CorelDraw''' qui estOuvrir le logiciel '''CorelDraw''' qui est installé sur l’ordinateur à côté de la trotec. *Ouvrir le fichier .pdf *Tout sélectionner et choisir « Ligne très fine » (image 1 - encadré) *Lancer l’impression via icône imprimante : #  Aller dans onglet "Général" cliquer sur "Préférence" (image 2 (1)) #Définir la taille de l'impression à partir de la taille vue sur la page de visualisation (image 1) et ajouter + 2 mm en largeur et hauteur (image 3 (1)) #  Cocher case géométrie interne d’abord (image 3 (2)) #  Disposition : angle supérieur gauche (image 2 onglet "Disposition" (2)) #Imprimer (image 2 (4))
    Tant que la zone d'impression n'est pas définie (image 3), une erreur apparaît image 2 (3)
    Ouvrir le logiciel '''Job Control''' qui est installé sur l’ordinateur à côté de la trotec. *Quand à partir de CorelDraw, l’impression est lancée. JC clignote *Choisir son Job et le positionner au niveau de la croix (1) *Cliquer sur buse (2) pour paramétrer le type de support ainsi que la vitesse et la puissance du laser (3) *Cliquer sur Œil - Votre dessin apparaît. (4) Lancer l'impression (5)
    ssance du laser (3) *Cliquer sur Œil - Votre dessin apparaît. (4) Lancer l'impression (5))
  • Tuto "Utilisation de Trotec"  + (Ouvrir le logiciel '''CorelDraw''' qui estOuvrir le logiciel '''CorelDraw''' qui est installé sur l’ordinateur à côté de la trotec. *Ouvrir le fichier .pdf *Tout sélectionner et choisir « Ligne très fine » (image 1 - encadré) *Lancer l’impression via icône imprimante : #  Aller dans onglet "Général" cliquer sur "Préférence" (image 2 (1)) #Définir la taille de l'impression à partir de la taille vue sur la page de visualisation (image 1) et ajouter + 2 mm en largeur et hauteur (image 3 (1)) #  Cocher case géométrie interne d’abord (image 3 (2)) #  Disposition : angle supérieur gauche (image 2 onglet "Disposition" (2)) #Imprimer (image 2 (4))
    Tant que la zone d'impression n'est pas définie (image 3), une erreur apparaît image 2 (3)
    Ouvrir le logiciel '''Job Control''' qui est installé sur l’ordinateur à côté de la trotec. *Quand à partir de CorelDraw, l’impression est lancée. JC clignote *Choisir son Job et le positionner au niveau de la croix (1) *Cliquer sur buse (2) pour paramétrer le type de support ainsi que la vitesse et la puissance du laser (3) *Cliquer sur Œil - Votre dessin apparaît. (4) Lancer l'impression (5)
    ssance du laser (3) *Cliquer sur Œil - Votre dessin apparaît. (4) Lancer l'impression (5))
  • Intime  + (Afin de s'assurer de l'utilisation des banAfin de s'assurer de l'utilisation des bandeaux de led adressables WS2812B nous avons effectué plusieurs tests sur l'IDE Arduino. Nous avons utilisé la bibliothèque Adafruit_NeoPixel. Cette dernière est très facile à utiliser et voici plusieurs liens expliquant clairement son utilisation : http://www.fablabredon.org/wordpress/2017/12/17/lumiere-sur-larduino-avec-de-la-couleur-et-des-led/ https://www.tweaking4all.com/hardware/arduino/arduino-ws2812-led/ Les tests lumineux les plus basiques ont d'abord été réalisés : allumage des leds, variations des couleurs, du nombre des leds, allumage de led précises. Par la suite, nous avons travaillé sur différents effets. Les effets fournis par la bibliothèque ne répondant pas complètement totalement à nos besoins (utilisation de delay provoquant des pauses lors du programme, pas de contrôle des paramètres des effets tels que le temps de parcours etc ...), nous avons décidé de commencer à coder nos propres effets. Les effets créés ont été les suivants : parcours des leds sur la longueur du bandeaux pendant une durée correspondant à un pouls donné, parcours symétrique de deux bandeaux à partir du centre (pouls des utilisateurs synchronisés). Les différents problèmes rencontrés ont été les suivants : dernières led restant allumées, effet saccadé ... Les différents solutions trouvées ont été d'utiliser plusieurs leds pour les parcours à intensité variées afin de donner un effet plus fondu, de trouver les bonnes bornes des boucles de parcours (arrêt avant le nombre total de led). Les vidéos montrées issues ont été effectuées après l'achat d'un néon (cf section design de l'objet). d'un néon (cf section design de l'objet).)
  • Intime  + (Afin de s'assurer de l'utilisation des banAfin de s'assurer de l'utilisation des bandeaux de led adressables WS2812B nous avons effectué plusieurs tests sur l'IDE Arduino. Nous avons utilisé la bibliothèque Adafruit_NeoPixel. Cette dernière est très facile à utiliser et voici plusieurs liens expliquant clairement son utilisation : http://www.fablabredon.org/wordpress/2017/12/17/lumiere-sur-larduino-avec-de-la-couleur-et-des-led/ https://www.tweaking4all.com/hardware/arduino/arduino-ws2812-led/ Les tests lumineux les plus basiques ont d'abord été réalisés : allumage des leds, variations des couleurs, du nombre des leds, allumage de led précises. Par la suite, nous avons travaillé sur différents effets. Les effets fournis par la bibliothèque ne répondant pas complètement totalement à nos besoins (utilisation de delay provoquant des pauses lors du programme, pas de contrôle des paramètres des effets tels que le temps de parcours etc ...), nous avons décidé de commencer à coder nos propres effets. Les effets créés ont été les suivants : parcours des leds sur la longueur du bandeaux pendant une durée correspondant à un pouls donné, parcours symétrique de deux bandeaux à partir du centre (pouls des utilisateurs synchronisés). Les différents problèmes rencontrés ont été les suivants : dernières led restant allumées, effet saccadé ... Les différents solutions trouvées ont été d'utiliser plusieurs leds pour les parcours à intensité variées afin de donner un effet plus fondu, de trouver les bonnes bornes des boucles de parcours (arrêt avant le nombre total de led). Les vidéos montrées issues ont été effectuées après l'achat d'un néon (cf section design de l'objet). d'un néon (cf section design de l'objet).)
  • Sèti - Mobilier multifonction  + (Enclencher les accoudoirs sur chaque flanc. Pour verrouiller les accoudoirs, mettre le petit carré dans l'espace de l'encoche. Il est suggérer de mettre un petit point de colle sous le petit carré si celui-ci ne rentre pas en force.)
  • Sèti - Mobilier multifonction  + (Enclencher les accoudoirs sur chaque flanc. Pour verrouiller les accoudoirs, mettre le petit carré dans l'espace de l'encoche. Il est suggérer de mettre un petit point de colle sous le petit carré si celui-ci ne rentre pas en force.)
  • Mobi-doc  + (Assemblez le cadre en vous assurant de la correspondance des encoches.)
  • Mobi-doc  + (Assemblez le cadre en vous assurant de la correspondance des encoches.)
  • Gravure photo en 3 étapes et l'option relief  + (Aprés avoir choisit l'image qui sera gravéAprés avoir choisit l'image qui sera gravée, il faut la préparer en amont. C'est à dire retirer le fond de l'image si on ne souhaite pas le graver par exemple. Il y a des applications en ligne gratuite qui le font plus ou moins bien. Si le résultat ne convient pas, passez par un logiciel de photo montage. Pour améliorer le contraste de l'image, je régule le niveau des blancs et des noirs. L'image convenant, on l'enregistre en jpeg par exemple pour pouvoir l'utiliser dans Inkscapemple pour pouvoir l'utiliser dans Inkscape)
  • Horloge de jeu d'échecs  + (Les deux afficheurs 7 segments servent de Les deux afficheurs 7 segments servent de compte à rebours visuel lors le la partie. Des moyens de contrôles avec les boutons poussoirs pour interagir avec l’horloge de l'échiquier. Des moyens visuels avec les LED pour différencier le mode partie et le mode réglage. Les leds blanches servent à différencier le joueur 1 et le joueur deux. Pour la programmation en langage C, j’utilise le mode INPUT_PULLUP pour gérer les boutons, en effet, avec cette fonction on utilise une résistance interne à l’arduino et on économise donc des résistances externe http://www.xavonline.net/partage/CODE-HORLOGE-ECHEC-TM1637.ino http://www.xavonline.net/zip/CODE-HORLOGE-ECHEC-TM1637.zipline.net/zip/CODE-HORLOGE-ECHEC-TM1637.zip)
  • Horloge de jeu d'échecs  + (Les deux afficheurs 7 segments servent de Les deux afficheurs 7 segments servent de compte à rebours visuel lors le la partie. Des moyens de contrôles avec les boutons poussoirs pour interagir avec l’horloge de l'échiquier. Des moyens visuels avec les LED pour différencier le mode partie et le mode réglage. Les leds blanches servent à différencier le joueur 1 et le joueur deux. Pour la programmation en langage C, j’utilise le mode INPUT_PULLUP pour gérer les boutons, en effet, avec cette fonction on utilise une résistance interne à l’arduino et on économise donc des résistances externe http://www.xavonline.net/partage/CODE-HORLOGE-ECHEC-TM1637.ino http://www.xavonline.net/zip/CODE-HORLOGE-ECHEC-TM1637.zipline.net/zip/CODE-HORLOGE-ECHEC-TM1637.zip)
  • Timer : Bug des couleurs  + (Sur le Timer de gauche il y a un anneau deSur le Timer de gauche il y a un anneau de Leds Adafruit neopixel x24 '''RGB''' la face des leds est '''blanche''', sur celui de droite il y a un anneau de Leds Adafruit neopixel x24 '''RGBW''' (rouge, vert, bleu et blanc !)la face des leds est '''noire''' . Ces deux anneaux sont différents et ne se commandent pas de la même façon. et ne se commandent pas de la même façon.)
  • Timer : Bug des couleurs  + (Sur le Timer de gauche il y a un anneau deSur le Timer de gauche il y a un anneau de Leds Adafruit neopixel x24 '''RGB''' la face des leds est '''blanche''', sur celui de droite il y a un anneau de Leds Adafruit neopixel x24 '''RGBW''' (rouge, vert, bleu et blanc !)la face des leds est '''noire''' . Ces deux anneaux sont différents et ne se commandent pas de la même façon. et ne se commandent pas de la même façon.)
  • Découpeuse Graveuse Laser Gravograph LS900XP  + (Appuyer sur le bouton de mise sous tensionAppuyer sur le bouton de mise sous tension (I/O) afin d'éteindre la machine. Fermer le logiciel (si personne n'a réservé pour la suite)
    Enregistrer votre travail

    class="icon-instructions-text">Enregistrer votre travail</div> </div><br/>)
  • Découpeuse Graveuse Laser Gravograph LS900XP  + (Fichier >>> Importer >>>Fichier >>> Importer >>> "nom fichier" >>> Ouvrir Ou voir figure ci-contre
    Si votre fichier n'apparaît pas, sélectionnez le type de fichier
    Si vous importez un fichier PDF, vous aurez à l'écran la figure 2 (gardez les mêmes paramètres).
    gt; </div>Si vous importez un fichier PDF, vous aurez à l'écran la figure 2 (gardez les mêmes paramètres).<br/>)
  • Bartop 2 joueurs - Découpe laser  + (Une fois les pièces fraisées, vous pouvez commencer par assembler les deux pièces du dos ensemble par des vis 10mm. Attention toutefois à bien aligner les deux pièces du dos par le bord plat du haut (voir photo).)
  • Stick Arcade 2 joueurs - Découpe laser  + (Coupez un total de 2 tasseaux de 19,2cm chacun. Sur chaque extrémité de chaque tasseau, marquez le centre de chaque côté. Munissez-vous de votre visseuse équipée d'une mèche bois de Ø 3mm et faites prétrouez les deux tasseaux aux endroits marqués.)
  • Borne d'arcade  + (Avant de commencer, il faut trouver ou traAvant de commencer, il faut trouver ou tracer des plans pour son bartop (la partie haute de la borne donc). Pour ma part je me suis inspiré des plans fournis par [https://fr.scribd.com/document/399080507/arcade-plans-package-8-5x11-print-updated-november-2016-pdf Ronildo Brandao]. Après les avoir imprimé et scotchés, puis reproduits sur des grandes feuilles A2, j'ai construit une magnifique maquette en carton, taille réelle, pour avoir une idée de la place que cela prendrait, de la taille d'écran que je pourrai mettre, et de la largeur disponible pour que deux grandes personnes puissent se lancer des Hadoken confortablement. Donc on imprime, on trace, on coupe, et on construit...me, on trace, on coupe, et on construit...)
  • Timer : Un minuteur à base d'Arduino  + (Placez l'afficheur 7 segments '''EXACTEMENPlacez l'afficheur 7 segments '''EXACTEMENT comme sur la photo''', sinon votre Timer risque de ne pas rentrer dans son boîtier ! Ensuite Soudez le en place, pour qu'il soit bien plaqué contre le bouclier, vous pouvez recourber ses pattes. Coupez lui les pattes une fois qu'il est soudé. Votre Timer prend forme. Bravo ! ''Temps indicatif : 10 min''rme. Bravo ! ''Temps indicatif : 10 min'')
  • Timer : Un minuteur à base d'Arduino  + (Vous avez trois boutons : PLUS (connectéVous avez trois boutons : PLUS (connecté à la broche 3 ) doit incrémenter la durée que vous voyez affichée sur l'afficheur LCD. MOINS (connecté à la broche 2 ) fait l'inverse. START (connecté à la broche 4 ) lance le compte à rebours et donc allume l'anneau de leds. Si ca ne marche pas : * Vérifiez votre câblage fil par fil en reprenant tout depuis de début * Vérifiez que votre Arduino est branché * Vérifiez que le code a bien été téléversé dans la carte * Demandez à quelqu'un de vérifiez votre câblage (souvent ça aide) ''Temps indicatif : 2 min''vent ça aide) ''Temps indicatif : 2 min'')