Difference between revisions of "Translations:FlyPi/2/en-gb"

(Importation d’une nouvelle version depuis une source externe.)
 
(Importation d’une nouvelle version depuis une source externe.)
 
Line 1: Line 1:
In this tutorial, I share the journey of how I built the FlyPi, without any previous electronics experience, so I could feed my insatiable urge to see how things work. Microscopy offers a lens to explore each visual frontier with its wonderful new perspectives and illuminates minuscule life regularly unobserved. This is an amazing experiences for anyone curious of what lies beneath our immediate visual capabilities. One main constraint for curious students, researchers and/or educators to look deeper into the micro world, is access to effective scientific tools. This is likely due to high prices set by development under a patent/scarcity methodology. Building your own FlyPi is a relatively easy and cost effective way to to get around this limiting factor. FlyPi is an all-in-one biology lab with powerful “off-the-shelf” electronic elements (Raspberry Pi & Arduino nano). It's modularity offers a fast, effective and low cost way to have better experimental control by customizing for specific needs and most importantly enables accessibility to research and explore the microscopic world around us. Just putting it together is a great learning experience for everyone not immediately comfortable with electronics. Some People have even begun to join scientific efforts in pursuing solutions to their local problems! 
+
In this tutorial, I share the journey of how I built the FlyPi, without any previous electronics experience, so I could feed my insatiable urge to see how things work. Microscopy offers a lens to explore each visual frontier with its wonderful new perspectives and illuminates minuscule life usually unobserved. This is an amazing experience for anyone curious of what lies beneath our immediate visual capabilities. One main constraint scientists at all levels (Students, researchers and/or educators) is access to effective scientific tools. The cost of tools as well as repait and maintenance, not to mention calibration. This is likely due to high prices set by development under a patent/scarcity methodology. Building your own FlyPi is a relatively easy and cost effective way to to get around this limiting factor. FlyPi is an all-in-one biology lab with powerful “off-the-shelf” electronic elements (Raspberry Pi & Arduino nano). It's modularity offers a fast, effective and low cost way to have better experimental control by customizing for specific needs and most importantly enables accessibility to research and explore the microscopic world around us. Just putting it together is a great learning experience for everyone not immediately comfortable with electronics. Some People have even begun to join scientific efforts in pursuing solutions to their local problems! 

Latest revision as of 17:33, 13 March 2020

Information about message (contribute)

This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.

Message definition (FlyPi)
In this tutorial, I share the journey of how I built the FlyPi, without any previous electronics experience, so I could feed my insatiable urge to see how things work. Microscopy offers a lens to explore each visual frontier with its wonderful new perspectives and illuminates minuscule life usually unobserved. This is an amazing experience for anyone curious of what lies beneath our immediate visual capabilities. One main constraint scientists at all levels (Students, researchers and/or educators) is access to effective scientific tools. The cost of tools as well as repait and maintenance, not to mention calibration. This is likely due to high prices set by development under a patent/scarcity methodology. Building your own FlyPi is a relatively easy and cost effective way to to get around this limiting factor. FlyPi is an all-in-one biology lab with powerful “off-the-shelf” electronic elements (Raspberry Pi & Arduino nano). It's modularity offers a fast, effective and low cost way to have better experimental control by customizing for specific needs and most importantly enables accessibility to research and explore the microscopic world around us. Just putting it together is a great learning experience for everyone not immediately comfortable with electronics. Some People have even begun to join scientific efforts in pursuing solutions to their local problems! 
TranslationIn this tutorial, I share the journey of how I built the FlyPi, without any previous electronics experience, so I could feed my insatiable urge to see how things work. Microscopy offers a lens to explore each visual frontier with its wonderful new perspectives and illuminates minuscule life usually unobserved. This is an amazing experience for anyone curious of what lies beneath our immediate visual capabilities. One main constraint scientists at all levels (Students, researchers and/or educators) is access to effective scientific tools. The cost of tools as well as repait and maintenance, not to mention calibration. This is likely due to high prices set by development under a patent/scarcity methodology. Building your own FlyPi is a relatively easy and cost effective way to to get around this limiting factor. FlyPi is an all-in-one biology lab with powerful “off-the-shelf” electronic elements (Raspberry Pi & Arduino nano). It's modularity offers a fast, effective and low cost way to have better experimental control by customizing for specific needs and most importantly enables accessibility to research and explore the microscopic world around us. Just putting it together is a great learning experience for everyone not immediately comfortable with electronics. Some People have even begun to join scientific efforts in pursuing solutions to their local problems! 

In this tutorial, I share the journey of how I built the FlyPi, without any previous electronics experience, so I could feed my insatiable urge to see how things work. Microscopy offers a lens to explore each visual frontier with its wonderful new perspectives and illuminates minuscule life usually unobserved. This is an amazing experience for anyone curious of what lies beneath our immediate visual capabilities. One main constraint scientists at all levels (Students, researchers and/or educators) is access to effective scientific tools. The cost of tools as well as repait and maintenance, not to mention calibration. This is likely due to high prices set by development under a patent/scarcity methodology. Building your own FlyPi is a relatively easy and cost effective way to to get around this limiting factor. FlyPi is an all-in-one biology lab with powerful “off-the-shelf” electronic elements (Raspberry Pi & Arduino nano). It's modularity offers a fast, effective and low cost way to have better experimental control by customizing for specific needs and most importantly enables accessibility to research and explore the microscopic world around us. Just putting it together is a great learning experience for everyone not immediately comfortable with electronics. Some People have even begun to join scientific efforts in pursuing solutions to their local problems!