Faucheuse guidée par GPS RTK

Auteur avatarOccitan | Dernière modification 10/09/2023 par Occitan

Cette faucheuse robot est capable de couper l'herbe de façon entièrement automatique sur un parcours déterminé à l'avance. Grâce au guidage par GPS RTK le parcours est reproduit à chaque tonte avec une précision meilleure que 10 centimètres.

Introduction

On va décrire ici une faucheuse robot capable de couper l'herbe de façon entièrement automatique sur un parcours déterminé à l'avance. Grâce au guidage par GPS RTK le parcours est reproduit à chaque tonte avec une précision meilleure que 10 centimètres (mon expérience) . Le pilotage est basé sur une carte Aduino Mega, complétée par quelques shields de commande moteurs, d'accéléromètres et boussole ainsi que d'une carte mémoire.


C'est une réalisation non professionnelle, mais qui m'a permis de me rendre compte des problèmes rencontrés en robotique agricole. Cette toute jeune discipline est en train de se développer rapidement, aiguillonnée par les nouvelles lois sur la réduction des désherbants et pesticides. Voici par exemple un lien vers le dernier salon de robotique agricole de Toulouse (https://www.fira-agtech.com/). Certaines entreprises comme Naio technologies fabriquent déjà des robots opérationnels (https://www.naio-technologies.com/).

En comparaison, ma réalisation est bien modeste mais elle permet tout de même de comprendre l'intérêt et les défis de façon ludique.

....Et puis elle fonctionne vraiment ! ...... et peut donc être utilisée pour couper l'herbe autour de sa maison, tout en préservant son temps libre...


Même si je ne décris pas la réalisation jusque dans les derniers détails, les indications que je donne sont précieuses pour celui qui voudrait se lancer. N'hésitez pas à poser des questions ou à faire des suggestions. Je serais vraiment ravi que ce type de projet puisse donner le goût de l'ingénierie à des bien plus jeunes que moi.... afin d'être prêts pour la grande robolution qui nous attend....

Matériaux

Outils

Étape 1 - Les objectifs

Le but est de fabriquer un prototype opérationnel de faucheuse capable de faucher l'herbe de manière autonome sur des terrains pouvant comporter des irrégularités importantes (prés plutôt que pelouses).


Le confinement dans le champ ne peut pas être basé sur une limitation par barrière physique ou par fil guide enterré comme pour les robots de tonte pour les pelouses. Les champs à faucher sont en effet variables et de surface importante.


Pour la barre de coupe, l'objectif est de maintenir la pousse de l'herbe à une certaine hauteur après une première tonte ou débroussaillage obtenus par un autre moyen.


Étape 2 - Présentation générale

Le système se compose d'un robot mobile et d'une base fixe.


Sur le robot mobile on trouve:

- Le tableau de bord

- Le boîtier de commande général incluant une carte mémoire.

- la manette de commande manuelle

- Le GPS configuré en "rover" ainsi que le récepteur de corrections RTK

- 3 roues motorisées

- Les moteurs à galets des roues

- la barre de coupe constituée de 4 disques tournants portant chacun 3 lames de cutter en périphérie (largeur de coupe de 1 mètre)

- le boîtier de gestion de la barre de coupe

- les batteries


Dans la base fixe on trouve le GPS configuré en "base" ainsi que l'émetteur des corrections RTK.


Les modes Rover et base des GPS seront décrits et expliqués dans la partei GPS.




Étape 3 - Mode d'emploi (1/ )

Je propose de prendre connaissance du robot à travers son mode d'emploi qui fait bien apparaître toutes ses fonctionnalités.


On commence donc par décrire les commandes du tableau de bord:

- Un interrupteur général

- un premier sélecteur à 3 positions permet de sélectionner les modes de fonctionnement: mode déplacement manuel, mode enregistrement de parcours, mode fauchage

- Un bouton poussoir sert de marqueur. On verra ses utilisations.

- Deux autres sélecteurs à 3 positions servent à sélectionner un numéro de fichier parmi 9. On dispose donc de 9 fichiers de fauchage ou d'enregistrements de parcours pour 9 champs différents.

- Un sélecteur à 3 positions est dédié à la commande de la barre de coupe. Une position OFF, une position ON, une position commande programmée.

- Afficheur deux lignes

- un sélecteur 3 positions pour définir 3 affichages différents

- une LED qui indique l'état du GPS. LED éteinte, pas de GPS. LED clignotante lentement, GPS sans corrections RTK. LED clignotante rapide, corrections RTK reçues. LED allumée, verrouillage GPS sur la plus grande précision.


Enfin, à côté du tableau de bord il y a la planchette de commande manuelle munie de deux sélecteurs à 3 positions. Celui de gauche commande la roue gauche, celui de droite commande la roue droite.



Étape 4 - Mode d'emploi (2 / )

Mode pilotage manuel (GPS non nécessaire)

Après mise ON et sélection de ce mode avec le sélecteur de mode, le pilotage de la machine se fait avec la planchette de commande.

Les deux sélecteurs à 3 positions ont un ressort de rappel qui les ramène toujours en position milieu, correspondant à l'arrêt des roues.

Quand on pousse les leviers de gauche et de droite vers l'avant les deux roues arrière tournent et la machine va tout droit. Quand on tire les deux leviers en arrière, la machine recule tout droit. Quand on pousse un levier vers l'avant

La motorisation de la roue avant s'ajuste automatiquement en fonction des deux commandes passées sur les deux roues arrière.

Ce mode fonctionne en toutes circonstances, en particulier lorsque l'on ne reçoit plus de signal GPS comme dans le hangar de rangement.


Enfin, dans cette position on peut également faucher de l'herbe. Pour cela, après avoir vérifié que personne ne se trouve à proximité des disques de coupe, on met ON le boîtier de gestion de la barre de coupe. On place ensuite le sélecteur de coupe sur ON. A cet instant les 4 disques de la barre de coupe se mettent en rotation.




Étape 5 - Mode d'emploi (3/ )

Mode enregistrement de parcours (GPS nécessaire)

- Avant de commencer à enregistrer un parcours, on définit arbitrairement un point de référence pour le champ et on le marque par un petit piquet. Ce point sera l'origine des coordonnées dans le repère géographique. L'axe Y de ce repère est la direction Sud-Nord et l'axe X est la direction Ouest-Est.

- On sélectionne ensuite le numéro de fichier dans lequel le parcours va être enregistré, grâce aux deux sélecteurs du tableau de bord.

- On met la base ON

- On vérifie alors que le clignotement de la LED d'état GPS se met à clignoter rapidement.

- On place le sélecteur de mode du tableau de bord sur la position enregistrement.

- On amène alors la machine manuellement à la position du point de référence. Précisément c'est l'antenne GPS qui doit se trouver au dessus de ce repère. Cette antenne GPS est située au dessus du point centré entre les deux roues arrière et qui est le point de rotation de la machine sur elle-même.

- On attend que la LED donnant le statut du GPS est maintenant allumée sans clignotement. Cela indique que le GPS est à sa précision maximum (10 cm).

- On marque la position origine 0,0 en appuyant sur le BP marqueur du tableau de bord.

- On se dirige alors vers le point suivant que l'on veut cartographier. Dès qu'il est atteint, on le signale à l'aide du marqueur.

- Pour mettre fin à l'enregistrement on repasse en mode manuel.






Étape 6 -

Mode fauchage (GPS nécessaire)




Étape 7 - Partie mécanique

La structure du robot

Le robot est construit autour d'une structure en treillis de tubes d'aluminium, ce qui lui confère une bonne rigidité. Ses dimensions sont environ de 1 mètre de long, 1 mètre de large et 80 cm de haut.


Les roues

Elle peut se déplacer grâce à 3 roues de vélo enfant de diamètre 20 pouces: Deux roues arrière et une roue avant semblable à la roulette des chariots de supermarché. C'est le mouvement relatif des deux roues arrière qui assure son orientation. Grâce à ce principe on peut avancer ou reculer en ligne droite, tourner autour d'une roue arrêtée, tourner autour d'un point situé entre les deux roues arrière.


Les moteurs à galet

A cause des irrégularités de terrain, il est nécessaire de disposer de couples importants. Dans ce but j'ai utilisé le principe de galet appuyant sur la roue


Étape 8 - Partie électrique

Étape 9 - Le GPS RTK

Étape 10 - Le programme de pilotage Arduino

Étape 11 - La barre de coupe et sa gestion

Étape 12 - Quelle suite donner ? Quelles améliorations ?

Commentaires

Draft