
Led Control with ESP Webserver

Will guide you to build a simple web control LED unit.

Introduction
In this tutorial, you will learn how to create a web server with ESP32 that can control an LED from any device connected to the same WiFi

network. You will use the Arduino IDE to program the ESP32 and the web browser to access the web server.

Facile 1 heure(s) Électronique 15 USD ($) Dif/culté  Durée  Catégories  Coût

Sommaire

Introduction

Étape 1 - What You Need

Étape 2 - Get PCBs For Your Projects Manufactured

Étape 3 - How It Works

Étape 4 - ESP32 Code

Étape 5 - Testing the Web Server

Étape 6 - Conclusion

Commentaires

Matériaux Outils

Étape 1 - What You Need
To follow this tutorial, you need the following components:

An ESP32 development board

A USB cable to connect the ESP32 to the computer

The Arduino IDE installed on your computer

The ESP32 add-on for the Arduino IDE

Étape 2 - Get PCBs For Your
Projects Manufactured
You must check out PCBWAY for ordering PCBs online for cheap!

You get 10 good-quality PCBs manufactured and shipped to your

doorstep for cheap. You will also get a discount on shipping on your

/rst order. Upload your Gerber /les onto PCBWAY to get them

manufactured with good quality and quick turnaround time.

PCBWay now could provide a complete product solution, from

design to enclosure production. Check out their online Gerber

viewer function. With reward points, you can get free stuff from

their gift shop. Also, check out this useful blog on PCBWay Plugin

for KiCad from here. Using this plugin, you can directly order PCBs

in just one click after completing your design in KiCad.

Page 1 / 4

https://www.pcbway.com/
https://www.pcbway.com/
https://www.pcbway.com/blog/News/PCBWay_Plug_In_for_KiCad_3ea6219c.html
https://wikifab.org/wiki/Fichier:Led_Control_with_ESP_Webserver_2.JPG

Étape 3 - How It Works
The ESP32 will act as a web server that can serve HTML and CSS

/les to web clients (such as web browsers or smartphones). The

web page will have a button that can send an HTTP request to the

ESP32 to turn the LED on or off.

The ESP32 will also handle the HTTP requests from the web clients

and respond accordingly. For example, if the ESP32 receives a

request to turn the LED on, it will set the GPIO pin connected to the

LED to HIGH and send back a con/rmation message.

Étape 4 - ESP32 Code
The code for the ESP32 is also straightforward. You need to include

the WiFi.h and ESPAsyncWebServer.h libraries, which are used to

connect the ESP32 to the WiFi network and to create the web

server.

You also need to de/ne the WiFi credentials, the GPIO pin for the

LED, and the web server object. Then, you need to create a function

to generate the HTML and CSS code for the web page, which will

have a button to toggle the LED state.

Next, you need to create a function to connect the ESP32 to the

WiFi network and print the IP address to the serial monitor. You

also need to create a function to handle the HTTP requests from

the web clients and change the LED state accordingly.

Finally, you need to initialize the LED pin, the WiFi connection, and

the web server in the setup() function, and keep the web server

running in the loop() function.

The complete code is shown below:

#include <WiFi.h>
#include <ESPAsyncWebServer.h>

// WiFi credentials
#define WIFI_SSID "Your WiFi SSID"
#define WIFI_PASSWORD "Your WiFi Password"

// LED pin
#define LED_PIN

// Web server object
AsyncWebServer server(80);

// LED state
int LED_state = LOW;

// Function to generate the HTML and CSS code for the web page
String getHTML() {
 String html = "<!DOCTYPE HTML>";
 html += "<html>";
 html += "<head>";
 html += "<style>";
 html += "body {background-color: #F0F0F0; font-family: Arial, Helvetic
a, sans-serif;}";
 html += "h1 {color: #333333; text-align: center;}";
 html += "button {width: 150px; height: 50px; font-size: 20px; margin: 1
0px;}";
 html += "</style>";
 html += "</head>";
 html += "<body>";
 html += "<h1>ESP32 Web Server</h1>";
 html += "<p>LED state: ";
 if (LED_state == LOW) html += "OFF";
 else html += "ON";
 html += "</p>";
 html += "<button onclick=\"window.location.href='/led/on'\">Turn ON</
button>";
 html += "<button onclick=\"window.location.href='/led/off'\">Turn OFF
</button>"; Page 2 / 4

https://wikifab.org/wiki/Fichier:Led_Control_with_ESP_Webserver_3.JPG
https://wikifab.org/wiki/Fichier:Led_Control_with_ESP_Webserver_4.JPG

</button>";
 html += "</body>";
 html += "</html>";
 return html;
}

// Function to connect to WiFi network
void connectWiFi() {
 Serial.print("Connecting to WiFi...");
 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println();
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}

// Function to handle HTTP requests
void handleRequest(AsyncWebServerRequest *request) {
 // Get the request path
 String path = request->url();
 // Check if the request is to turn the LED on
 if (path == "/led/on") {
 // Set the LED pin to HIGH
 digitalWrite(LED_PIN, HIGH);
 // Update the LED state
 LED_state = HIGH;
 // Send a confirmation message
 request->send(200, "text/plain", "LED turned on");
 }
 // Check if the request is to turn the LED off
 else if (path == "/led/off") {
 // Set the LED pin to LOW
 digitalWrite(LED_PIN, LOW);
 // Update the LED state
 LED_state = LOW;
 // Send a confirmation message
 request->send(200, "text/plain", "LED turned off");
 }
 // Otherwise, send the web page
 else {
 // Get the HTML and CSS code
 String html = getHTML();
 // Send the web page
 request->send(200, "text/html", html);
 }
}

void setup() {
 // Initialize the serial monitor
 Serial.begin(115200);

 // Initialize the LED pin
 pinMode(LED_PIN, OUTPUT);
 digitalWrite(LED_PIN, LED_state);

 // Connect to WiFi network
 connectWiFi();

 // Start the web server
 server.onNotFound(handleRequest);
 server.begin();
}

void loop() {
 // Nothing to do here
}

Page 3 / 4

Étape 5 - Testing the Web Server
To test the web server, you need to upload the code to the ESP32

board and open the serial monitor. You should see the IP address of

the ESP32, which is something like 192.168.1.8

Then, you need to open a web browser on your computer or

smartphone and enter the IP address of the ESP32. You should see

the web page with the button to control the LED.

You can click the button to toggle the LED state and see the

con/rmation message on the web browser.

Étape 6 - Conclusion
In this tutorial, you learned how to create a web server with ESP32

that can control an LED from any device connected to the same

WiFi network. You learned how to use the WiFi.h and

ESPAsyncWebServer.h libraries to connect the ESP32 to the WiFi

network and to create the web server. You also learned how to

generate the HTML and CSS code for the web page and how to

handle the HTTP requests from the web clients.

You can use this tutorial as a basis for your own projects that involve

controlling GPIO pins or other devices with the ESP32 web server.

You can also customize the web page design and functionality to

suit your needs.

I hope you enjoyed this tutorial and found it useful. If you have any

questions or feedback, please let me know. �

Page 4 / 4

https://wikifab.org/wiki/Fichier:Led_Control_with_ESP_Webserver_5.JPG
https://wikifab.org/wiki/Fichier:Led_Control_with_ESP_Webserver_6.JPG

	Led Control with ESP Webserver
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - What You Need
	Étape 2 - Get PCBs For Your Projects Manufactured
	Étape 3 - How It Works
	Étape 4 - ESP32 Code
	Étape 5 - Testing the Web Server
	Étape 6 - Conclusion

