
Implementing Web Server on ESP32

Will guide you to implementing a web server on ESP32 Board.

Introduction
The ESP32, a low-cost microcontroller with integrated Wi-Fi and Bluetooth capabilities, has become a popular choice for IoT applications due

to its power and affordability. One intriguing application is the creation of a web server. This blog post will provide a step-by-step guide on

how to implement a web server on the ESP32.

Facile 1 heure(s) Électronique 5 USD ($) Dif.culté  Durée  Catégories  Coût

Sommaire

What is a Web Server?

What is ESP32?

Step 1: Setting Up the Environment

Step 2: Including the Necessary Libraries

Step 3: De.ning the Wi-Fi Credentials

Step 4: Setting Up the Web Server

Step 5: Connecting to Wi-Fi

Step 6: Starting the Web Server

Step 7: Deployment

Introduction

Étape 1 - Understanding the Basics

Étape 2 - Get PCBs For Your Projects Manufactured

Étape 3 - Step-by-Step Guide to Implementing a Web Server on ESP32

Étape 4 - Wrapping Up

Commentaires

Matériaux Outils

Page 1 / 4

Étape 1 - Understanding the Basics

What is a Web Server?
A web server is a software application that serves web pages to

users. When a user requests a web page, the web server processes

the request and sends the requested page back to the user’s

browser. This forms the backbone of data communication on the

World Wide Web.

What is ESP32?
The ESP32 is a series of low-cost, low-power systems on a chip

microcontroller with integrated Wi-Fi and dual-mode Bluetooth.

The ESP32 series employs a Tensilica Xtensa LX6 microprocessor

and includes built-in antenna switches, an RF balun, a power

ampli.er, a low-noise receiver ampli.er, .lters, and power

management modules. It is suitable for a wide variety of

applications, from low-power sensor networks to more demanding

tasks such as music streaming.

Étape 2 - Get PCBs For Your
Projects Manufactured
You must check out PCBWAY for ordering PCBs online for cheap!

You get 10 good-quality PCBs manufactured and shipped to your

doorstep for cheap. You will also get a discount on shipping on your

.rst order. Upload your Gerber .les onto PCBWAY to get them

manufactured with good quality and quick turnaround time.

PCBWay now could provide a complete product solution, from

design to enclosure production. Check out their online Gerber

viewer function. With reward points, you can get free stuff from

their gift shop. Also, check out this useful blog on PCBWay Plugin

for KiCad from here. Using this plugin, you can directly order PCBs

in just one click after completing your design in KiCad.

WiFi.h

ESPAsyncWebServer.h

your_SSID your_PASSWORD

Étape 3 - Step-by-Step Guide to Implementing a Web Server on ESP32

Step 1: Setting Up the Environment
Before we delve into the implementation, we need to set up the ESP32 development environment. This involves installing the ESP32 board

de.nitions in the Arduino IDE and connecting the ESP32 to your computer via a USB cable. The Arduino IDE provides a comfortable coding

environment and makes it easy to upload programs to the board.

Step 2: Including the Necessary Libraries
The .rst step in our implementation is to include the necessary libraries. We’ll need the library for connecting the ESP32 to a Wi-Fi

network and the library for handling HTTP requests. These libraries provide the necessary functions and

methods to establish a Wi-Fi connection and to set up a web server.

#include <WiFi.h>
#include <ESPAsyncWebServer.h>

Step 3: De.ning the Wi-Fi Credentials
Next, we need to de.ne our Wi-Fi credentials. Replace and with your actual Wi-Fi SSID and password.

These credentials will be used to connect the ESP32 to your local Wi-Fi network.

Page 2 / 4

https://wikifab.org/wiki/Fichier:Implementing_Web_Server_on_ESP32_2.JPG
https://www.pcbway.com/
https://www.pcbway.com/
https://www.pcbway.com/blog/News/PCBWay_Plug_In_for_KiCad_3ea6219c.html
https://wikifab.org/wiki/Fichier:Implementing_Web_Server_on_ESP32_3.JPG

AsyncWebServer

WiFi.begin()

server.begin()

server.begin();

const char* ssid = "your_SSID";
const char* password = "your_PASSWORD";

Step 4: Setting Up the Web Server
Now we can set up our web server. We’ll create an instance of the class and de.ne a route. The server will listen on port

80, which is the default port for HTTP. The route is de.ned by the URL that the user types into their browser. In this case,

the root URL (“/”) will return a simple text message.

// Define a route to serve the HTML page
 server.on("/", HTTP_GET, [](AsyncWebServerRequest* request) {
 Serial.println("ESP32 Web Server: New request received:"); // for debugging
 Serial.println("GET /"); // for debugging
 request->send(200, "text/html", "<html><body><h1>Hello, ESP32!</h1></body></html>");
 });

Step 5: Connecting to Wi-Fi
Before we can start our web server, we need to connect the ESP32 to Wi-Fi. The function is used to connect to the Wi-Fi

network. We then wait until the ESP32 is successfully connected before proceeding.

WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
 delay(1000);
 Serial.println("Connecting to WiFi...");
}
Serial.println(WiFi.localIP());

Step 6: Starting the Web Server
Finally, we can start our web server. The function is used to start the server. Once the server is started, it will listen for

incoming HTTP requests and respond accordingly.

Step 7: Deployment
Just upload the code to the ESP32 board and look for the serial monitor results.

Page 3 / 4

#include <WiFi.h>
#include <ESPAsyncWebServer.h>
const char* ssid = "ELDRADO"; // CHANGE IT
const char* password = "amazon123"; // CHANGE IT
AsyncWebServer server(80);
void setup() {
 Serial.begin(9600);
 // Connect to Wi-Fi
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 delay(1000);
 Serial.println("Connecting to WiFi...");
 }
 Serial.println("Connected to WiFi");
 // Print the ESP32's IP address
 Serial.print("ESP32 Web Server's IP address: ");
 Serial.println(WiFi.localIP());
 // Define a route to serve the HTML page
 server.on("/", HTTP_GET, [](AsyncWebServerRequest* request) {
 Serial.println("ESP32 Web Server: New request received:"); // for debugging
 Serial.println("GET /"); // for debugging
 request->send(200, "text/html", "<html><body><h1>Hello, ESP32!</h1></body></html>");
 });
 // Start the server
 server.begin();
}
void loop() {}

Here is the serial monitor result:

Next, navigate to the particular IP address in the web browser and look for the response.

Étape 4 - Wrapping Up
Congratulations! You’ve just implemented a simple web server on

the ESP32. You can now access this server from any device

connected to the same Wi-Fi network by entering the ESP32’s IP

address into a web browser. This is just the beginning - you can

expand this server to control GPIO pins, read sensor data, and much

more. The possibilities are endless.

Page 4 / 4

https://wikifab.org/wiki/Fichier:Implementing_Web_Server_on_ESP32_4.JPG
https://wikifab.org/wiki/Fichier:Implementing_Web_Server_on_ESP32_5.JPG
https://wikifab.org/wiki/Fichier:Implementing_Web_Server_on_ESP32_6.JPG

	Implementing Web Server on ESP32
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - Understanding the Basics
	What is a Web Server?
	What is ESP32?

	Étape 2 - Get PCBs For Your Projects Manufactured
	Étape 3 - Step-by-Step Guide to Implementing a Web Server on ESP32
	Step 1: Setting Up the Environment
	Step 2: Including the Necessary Libraries
	Step 3: Defining the Wi-Fi Credentials
	Step 4: Setting Up the Web Server
	Step 5: Connecting to Wi-Fi
	Step 6: Starting the Web Server
	Step 7: Deployment

	Étape 4 - Wrapping Up

