
Mosquitto MQTT - IoT Platform Series

 Mosquitto_MQTT_-_IoT_Platform_Series_mosquitto_mqtt_using_pubsub_client_library.ino

Know and Understand MQTT protocol. Then implement and build a project to subscribe and publish on the public server of

test.mosquitto.org.

Introduction
MQTT stands for Message-Queue-Telemetry-Transport, is a publish/subscribe protocol for machine-to-machine communication. This simple

protocol, is easy to implement for any client. Termed as the Pub and Sub, both are used for same purpose but with different methods.

Moyen 1 heure(s) Électronique, Robotique

5 USD ($)

 Dif.culté  Durée  Catégories

 Coût

Sommaire

Introduction

Étape 1 - Getting Started

Étape 2 - Get PCBs for Your Projects Manufactured

Étape 3 - MQTT Broker

Étape 4 - Mosquitto Platform

Étape 5 - Publisher (ESP32)

Étape 6 - Subscriber (Windows PC)

Commentaires

Matériaux Outils

Page 1 / 8

https://wikifab.org/images/4/4f/Mosquitto_MQTT_-_IoT_Platform_Series_mosquitto_mqtt_using_pubsub_client_library.ino

Étape 1 - Getting Started
Here, there are 2 sections - Publish and Subscribe. And then there is a middleman - Broker. Let us see in depth

IoT Devices play the role to collect sensor data and send to the cloud (broker). While PC / Server / Mobile devices play the role to

monitor and receive the sensor data to be viewed - Here, IoT Device is a Publisher, and PC Devices are Subscriber.

[EXAMPLE] When a user1 publishes an image on social media, then only the user2 subscribed to user1 can

view/receive the image. Here, the user1 is the PUBLISHER, user2 is the SUBSCRIBER, and the user1's account

is the BROKER.

According to the above analogy, the image that is published is the data, that was transferred from user1 to user2 �. And that is the exact

scenario in an MQTT Pub/Sub model.

We have a more secure layer � to make sure the data is shared t hrough a speci.c path, we call that 'topic', When user1 publishes data on

topic, the subscriber automatically receives if already connected to the broker. Hence, the LOW latency.

Étape 2 - Get PCBs for Your
Projects Manufactured
You must check out PCBWAY for ordering PCBs online for cheap!

You get 10 good-quality PCBs manufactured and shipped to your

doorstep for cheap. You will also get a discount on shipping on your

.rst order. Upload your Gerber .les onto PCBWAY to get them

manufactured with good quality and quick turnaround time.

PCBWay now could provide a complete product solution, from

design to enclosure production. Check out their online Gerber

viewer function. With reward points, you can get free stuff from

their gift shop.

Page 2 / 8

https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_1.jpg
https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_2.png
https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_2_2.png
https://www.pcbway.com/
https://www.pcbway.com/
https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_3_47xi04Mhri.JPG

Étape 3 - MQTT Broker
Whenever there is a pub-sub model used as a message

communication protocol, we require a broker that can transfer the

information in the required device. This can be done by sending the

message under correct topic.

Let us understand this -

A Broker is a runtime server (continuously running service),

which can have 2 types of clients - Publisher (seller) &

Subscriber (buyer)

For instance, when a seller sells a product through a broker to a

buyer, then it is using the Broker's service to reach & .nd a

secured buyer.

Similarly, when publisher publishes a piece of information, the

data reaches to the subscriber through the Broker.

The broker is responsible for having speci.c storage space

where it can expect data from the publisher to store

temporarily and then send to the subscriber.

In the pub-sub MQTT, clients talk to each other through an

MQTT broker.

There are many MQTT Brokers in the market. It is even possible

to create our own broker, or use an open-source broker 'paho'.

For the current project, we shall .rst understand the

mechanism and then watch a trial movement of data on

Mosquitto MQTT Broker.

Page 3 / 8

https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_3.png

Étape 4 - Mosquitto Platform
Now that we understand how MQTT works, let us use a cloud MQTT

service and send data across the internet. In this article, we'll be

using Mosquitto MQTT - test.mosquitto.org

Under the Server section, we can see different ports provide

feature-separated servers. These servers act like channels for

sharing data over the cloud. Let us understand it .rst -

MQTT Broker Port (default: 1883): This is the standard port

used for MQTT communication. MQTT clients use i to connect

to the Mosquitto broker and publish/subscribe to topics. It

operates over TCP.

MQTT Broker SSL/TLS Port (default: 8883): This is the secure

version of the MQTT broker port. It uses SSL/TLS encryption to

provide secure communication between MQTT clients and the

Mosquitto broker. Clients connect to this port to establish a

secure connection.

WebSocket Port (default: 9001): Mosquitto also supports

MQTT over WebSockets, allowing MQTT clients to connect to

the broker using the WebSocket protocol. The WebSocket port

is used for WebSocket-based MQTT communication.

WebSocket SSL/TLS Port (default: 9443): This is the secure

WebSocket port used for encrypted WebSocket-based MQTT

communication. It provides a secure connection using SSL/TLS

encryption.

We shall be using 1883 port to send data and monitor. As we know,

MQTT has 3 services - Publisher, Broker, and Subscriber. In this case,

mosquito MQTT Cloud is already playing the role of a broker.

Now, we'd be using ESP32 Dev Board, which has a wi. chip and is

able to connect to the Internet, playing the role of a Publisher for

sharing its temperature and humidity data from the sensor.

On the other hand, we shall use the PC to view this data as a

Subscriber. This will enable us to fully understand the working

principle of the MQTT protocol used in IoT Communication

between devices.

PubSubClient

mqtt_topic

"schoolofiot/device1".

mqtt_server

mqtt_port

#include <WiFi.h>
#include <PubSubClient.h>

const char* ssid = "XXXXXXXXXX";
const char* password = "XXXXXXXXXX";

const char* mqtt_server = "test.mosquitto.org";

mqtt_server

Étape 5 - Publisher (ESP32)
To set up the ESP32 for MQTT, we need to install a library - . This library has functions that use variables as mentioned below

to send data to the broker.

: This variable represents the address or IP of the MQTT broker. We shall be using "test.mosquitto.org"

: This variable represents the port number of the MQTT broker. In our case 1883.

: This variable represents the topic to which the publisher will send messages. For Example

Where 'schoolo.ot' is the general-most topic level. And 'device1' is a sub-

level.

The provided code is an Arduino sketch that uses the ESP32 WiFi module and the PubSubClient library to connect to an MQTT broker and

publish temperature and humidity data. Let's break down the code step by step:

1. Include necessary libraries:

This code includes the required libraries for the ESP32 WiFi module and the MQTT client functionality.

2. De.ne WiFi & MQTT Server variables:

These variables store the SSID (network name) and password for the WiFi network you want to connect to. The variable holds

the IP address or hostname of the MQTT broker.
Page 4 / 8

http://test.mosquitto.org
https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_4.png

WiFiClient espClient;
PubSubClient client(espClient);

long lastMsg = 0;
char msg[50];

int value = 0;
float temperature = 0;

float humidity = 0;

espClient client lastMsg

msg value temperature

void setup()
Serial.begin(115200);

setup_wifi();
client.setServer(mqtt_server, 1883);

client.setCallback(callback);
}

setup()

void setup_wifi() {
// ...

}

setup_wifi()

void callback(char* topic, byte* message, unsigned int length) {

// ...

}

void reconnect() {
// ...

}

reconnect()

humidity

3. Declare global variables and objects:

Here, a WiFi client object () and an MQTT client object () are declared. The variable stores the timestamp of

the last message, and the is a character array for message storage. The , , and

variables are used to hold the respective sensor values.

4. Setup function:

The function is called once at the start of the program. It initializes the serial communication, sets up the WiFi connection,

con.gures the MQTT server and port, and sets the callback function to handle incoming messages.

5. WiFi setup function:

The function handles the connection to the WiFi network using the provided SSID and password. It waits until the connection

is established and prints the local IP address to the serial monitor.

6. MQTT callback function:

This function is called when a message is received from the MQTT broker. It prints the received message along with the corresponding topic.

7. MQTT reconnection function:

The function is responsible for reconnecting to the MQTT broker if the connection is lost. It attempts to connect to the broker

using a randomly generated client ID. If the connection is successful, it prints a success message. Otherwise, it waits for 5

seconds before retrying.

8. Main loop:

Page 5 / 8

void loop() {
if (!client.connected()) {

reconnect();
}

client.loop();
long now = millis();

if (now - lastMsg > 2000) {

lastMsg = now; sendData();
}

}

loop() setup()

client.loop()

void sendData() {
// ...

}

sendData()

client.publish("schoolofiot/gap", "--------------");

temperature = random(30, 40);
char tempString[8];

dtostrf(temperature, 1, 2, tempString);
Serial.print("Temperature: ");

Serial.println(tempString); String tempdata = "Temperature: " + String(tempString);

client.publish("schoolofiot/temperature", tempdata.c_str());

temperature dtostrf()

sendData()

dtostrf(floatValue, minStringWidth, numAfterDecimal,
charBuf_to_store_string);

The function is the main program loop that runs continuously after the function. It checks if the MQTT client is connected

and, if not, attempts to reconnect. It also calls the function to maintain the MQTT client's internal state.

Every 2 seconds, it calls the function to publish temperature and humidity data.

9. Publish sensor data function:

The function is responsible for publishing temperature and humidity data to speci.c MQTT topics. It generates random values

for temperature and humidity, converts them to strings, and publishes them along with the corresponding topic.

- Publish a gap message:

This line publishes a message consisting of a series of dashes () to the MQTT topic "schoolo.ot/gap". It is used to indicate a

separation or gap between different sets of data.

- Read and publish temperature data:

These lines generate a random temperature value between 30 and 40 degrees, store it in the variable, and use

function to convert decimal point data to String.

This function takes four parameters

to convert double into an ASCII value stored inside string:

1. PoatValue: The .rst parameter that takes the Poat value we want to convert into a string.

2. minStringWidth: This is the second parameter that de.nes the minimum .eld width of the output string.

3. numAfterDecimal: The third parameter is precision which describes the number of digits after the decimal

point.

4. charBuffer: Final argument is where the string will be stored. This is a kind of char array having a de.ned

size.

Page 6 / 8

tempdata tempdata client.publish()

humidity = random(60, 70);
char humString[8];

dtostrf(humidity, 1, 2, humString);
Serial.print("Humidity: ");

Serial.println(humString);

''mString humdata = "Humidity: " + String(humString); client.publish("schoolofiot/humidity", humdata.c_str());

sendData()

humidity

The temperature value is then printed to the serial monitor and concatenated with the string "Temperature: ". The resulting string is stored in

the variable. Finally, the string is published to the MQTT topic schoolo.ot/temperature using the

function.

- Read and publish humidity data:

These lines generate a random humidity value between 60 and 70 percent, store it in the variable.

Overall, the function generates random temperature and humidity values, converts them to strings, and publishes

them to speci.c MQTT topics for further processing or monitoring.

Final Code can be found in the Code section
But to con.rm this, we also need to read the data from other the side - Subscriber.

Page 7 / 8

mosquitto.conf

listener 1883
allow_anonymous true

mosquitto_sub.exe

> .\mosquitto_sub -h test.mosquitto.org -t "schoolofiot/#"

> .\mosquitto_sub -h test.mosquitto.org -t "schoolofiot/temperature"

mosquitto.conf

Étape 6 - Subscriber (Windows PC)
To set up the Subscriber on PC, we need to install Mosquitto MQTT Applcation. This application can create a broker, publisher & subscriber -

all sections

To install Mosquitto MQTT on your PC from the of.cial website and make changes to the con.guration .le for listener 1883 and allow

anonymous connections, you can follow these steps:

1. Download and Install Mosquitto:

Go to the of.cial Mosquitto website (https://mosquitto.org/).

Navigate to the "Downloads" section.

Choose the appropriate installer for your operating system (Windows x64 in this case) and download it

Install the application in desired location.

2. Edit Con.guration File:

Open the installation directory where Mosquitto is installed.

Locate the .le (usually found in the main directory).

Open in a text editor of your choice. Add the below 2 lines -

It should look somewhat like this -

We can uncomment ad make changes in the .le as well, but adding only 2 lines on the top is more simple and noticeable.

3. Run Mosquitto Subscriber

We can run the Mosquitto broker and then subscribe to the topic we desire. But running directly the subscriber is best in our case.

Open the folder/directory where the mosquitto.exe along with is present.

Run the PowerShell/CMD terminal from within the directory. For windows, open the directory > Press shift + right-
mouse-button(right-click), and we'd see options for running a terminal like powershell.

On the terminal, enter below command -

In the above command, if you noticed, I did not subscribe to a speci.c topic. As per the topics we published (from ESP32), like

"schoolo.ot/gap", "schoolo.ot/temperature" or "schoolo.ot/humidity".

The reason is, gap, temperature & humidity comes under the general topic of schoolo.ot level. So, to access/view any data published as a

sub-level of schoolo.ot, we can use '#'.

Apart from this, in case we need to subscribe to a speci.c topic (like temperature), we can use command like this -

Therefore, no matter what name is put under the general topic, we can subscribe to it and view all of them together.

Hurray! �

We have learned another IoT Platform - Mosquitto MQTT (By Eclipse)

Page 8 / 8

https://mosquitto.org/
https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_5.png
https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_6.png
https://wikifab.org/wiki/Fichier:Mosquitto_MQTT_-_IoT_Platform_Series_7.png

	Mosquitto MQTT - IoT Platform Series
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - Getting Started
	Étape 2 - Get PCBs for Your Projects Manufactured
	Étape 3 - MQTT Broker
	Étape 4 - Mosquitto Platform
	Étape 5 - Publisher (ESP32)
	Étape 6 - Subscriber (Windows PC)

