
Visual Gesture Controlled IoT CarVisual Gesture Controlled IoT Car

 https://www.hackster.io/akshayansinha/visual-gesture-controlled-iot-car-590603#code

Remember the opening scene of movie 'Project Almanac'? Controlling a drone with hand? Make it yourself, and to simplify,

let's control a CAR

Introduction
Have you watched the movie 'Project Almanac'? Which was released in the year 2015. If not, then let me brief you a scene about it.

In the movie, the main character wishes to get into MIT and therefore, builds a project for his portfolio. The project was about a drone, that

could be controlled using a 2.4GHz remote controller, but when the software application on the laptop was run, the main character was seen

controlling the drone with his hands in the air! The software application used a webcam to track the the movement of the character's hand

movements.

MoyenMoyen 3 3 heure(s)heure(s) Énergie, Robotique, TransportÉnergie, Robotique, Transport

50 EUR (€)50 EUR (€)

 Dif>culté Durée Catégories

 Coût

SommaireSommaire

Introduction

Étape 1 - Introduction

Étape 2 - Custom PCB on your Way!

Étape 3 - Getting Started

Étape 4 - OpenCV and MediaPipe

Étape 5 - Hand Tracking and Camera Frame UI

Étape 6 - Code - Software

Étape 7 - Code - Hardware

Étape 8 - Project Almanac in action!

Commentaires

Matériaux Outils

Étape 1 - Introduction
Have you watched the movie 'Project Almanac'? Which was

released in the year 2015. If not, then let me brief you a scene about

it.

In the movie, the main character wishes to get into MIT and

therefore, builds a project for his portfolio. The project was about a

drone, that could be controlled using a 2.4GHz remote controller,

but when the software application on the laptop was run, the main

character was seen controlling the drone with his hands in the air!

The software application used a webcam to track the the movement

of the character's hand movements.

Page 1 / 8

https://www.hackster.io/akshayansinha/visual-gesture-controlled-iot-car-590603#code
https://wikifab.org/wiki/Fichier:Visual_Gesture_Controlled_IoT_Car_1_-_Made_with_Clipchamp.gif

Étape 2 - Custom PCB on your
Way!
Modern methods of development got easier with software services.

For hardware services, we have limited options. Hence PCBWay

gives the opportunity to get custom PCB manufactured for hobby

projects as well as sample pieces, in very little delivery time

Get a discount on the >rst order of 10 PCB Boards. Now, PCBWay

also offers end-to-end options for our products including hardware

enclosures. So, if you design PCBs, get them printed in a few steps!

Étape 3 - Getting Started
As we already saw, this technology was well displayed in the movie

scene. And the best part is, in 2023 it is super easy to rebuild it with

great tools like OpenCV and MediaPipe. We will control a machine

but with a small change in the method, than the one the character

uses to let the camera scan his >ngers.

He used color blob stickers on his >ngertips so that the camera

could detect those blobs. When there was a movement in the hands,

which was visible from the camera, the laptop sent the signal to the

drone to move accordingly. This allowed him to control the drone

without any physical console.

Using the latest technological upgrades, we shall make a similar, but

much simpler version, which can run on any embedded Linux

system, making it portable even for an Android system. Using

OpenCV and MediaPipe, let us see how we can control our

2wheeled battery-operated car, over a Wi-Fi network with our

hands in the air!

Page 2 / 8

http://www.pcbway.com/?from=akshayansinha
http://www.pcbway.com/?from=akshayansinha
https://wikifab.org/wiki/Fichier:Visual_Gesture_Controlled_IoT_Car_ad_loop.gif
https://wikifab.org/wiki/Fichier:Visual_Gesture_Controlled_IoT_Car_2_-_Made_with_Clipchamp.gif

Étape 4 - OpenCV and MediaPipe
OpenCV is an open-source computer vision library primarily

designed for image and video analysis. It provides a rich set of tools

and functions that enable computers to process and understand

visual data. Here are some technical aspects.

Image Processing: OpenCV offers a wide range of fuctions for

image processing tasks such as >ltering, enhancing, and

manipulating images. It can perform operations like blurring,

sharpening, and edge detection.

Object Detection: OpenCV includes pre-trained models for

object detection, allowing it to identify and locate objects within

images or video streams. Techniques like Haar cascades and

deep learning-based models are available.

Feature Extraction: It can extract features from images, such as

keypoints and descriptors, which are useful for tasks like image

matching and recognition.

Video Analysis: OpenCV enables video analysis, including

motion tracking, background subtraction, and optical Jow.

MediaPipe is an open-source framework developed by Google that

provides tools and building blocks for building various types of real-

time multimedia applications, particularly those related to

computer vision and machine learning. It's designed to make it

easier for developers to create applications that can process and

understand video and camera inputs. Here's a breakdown of what

MediaPipe does:

Real-Time Processing: MediaPipe specializes in processing

video and camera feeds in real-time. It's capable of handling live

video streams from sources like webcams and mobile cameras.

Cross-Platform: MediaPipe is designed to work across different

platforms, including desktop, mobile, and embedded devices.

This makes it versatile and suitable for a wide range of

applications.

Machine Learning Integration: MediaPipe seamlessly integrates

with machine learning models, including TensorFlow Lite, which

allows developers to incorporate deep learning capabilities into

their applications. For example, you can use it to build

applications that recognize gestures, detect facial expressions,

or estimate the body's pose.

Ef>cient and Optimized: MediaPipe is optimized for

performance, making it suitable for real-time applications on

resource-constrained devices. It takes advantage of hardware

acceleration, such as GPU processing, to ensure smooth and

ef>cient video processing.

From above if you have noticed, this project will require one feature

from each of these tools, to be able to make our project work. Video

Analysis from OpenCV and HandTracking from MediaPipe. Let us

begin with the environment to be able to work seamlessly.

Page 3 / 8

https://wikifab.org/wiki/Fichier:Visual_Gesture_Controlled_IoT_Car_ProjectAlmanac_Car.png

Étape 5 - Hand Tracking and
Camera Frame UI
As we move ahead, we need to know how to use OpenCV and

Mediapipe to detect hands. For this part, we shall use the Python

library.

Make sure you have Python installed on the laptop, and please run

below command to install the necessary libraries -

Run the command to install the libraries -

python -m pip install opencv-python mediapipe requests numpy

To begin with the the control of car from the camera, let us

understand how it will function -

The camera must track the hands or >ngers to control the

movement of the car. We shall track the index >nger on the

camera for that.

Based on the location of >nger with reference to the given

frame, there will be forward, backward, left, right and stop

motion for the robot to function.

While all the movements are tracked on real time, the interface

program should send data while reading asynchronously.

To perform the above task in simple steps, methods used in the

program have been simpli>ed in beginner's level. Below is the >nal

version!

As we see above, the interface is very simple and easy to use. Just

move your index >nger tip around, and use the frame as a console to

control the robot. Read till the end and build along to watch it in

action!

Étape 6 - Code - Software
Now that we know what the software UI would look like, let us begin to understand the UI and use HTTP request to send signal to the car to

make actions accordingly.

Initializing MediaPipe HandsInitializing MediaPipe Hands

mp_hands = mp.solutions.hands
hands = mp_hands.Hands()
mp_drawing = mp.solutions.drawing_utils

Here, we initialize the MediaPipe Hands module for hand tracking. We create instances of mp.solutions.hands and

mp.solutions.drawing_utils, which provide functions for hand detection and visualization.

Initializing VariablesInitializing Variables

tracking = False
hand_y = 0
hand_x = 0
prev_dir = ""
URL = "http://projectalmanac.local/"

In this step, we initialize several variables that will be used to keep track of hand-related information and the previous direction.

A URL is de>ned to send HTTP requests to the hardware code of ca

De>ning a Function to Send HTTP RequestsDe>ning a Function to Send HTTP Requests

def send(link):
 try:
 response = requests.get(link)
 print("Response ->", response)
 except Exception as e:
 print(f"Error sending HTTP request: {e}")

Page 4 / 8

https://wikifab.org/wiki/Fichier:Visual_Gesture_Controlled_IoT_Car_1.jpg

This step de>nes a function named send that takes a link as an argument and sends an HTTP GET request to the speci>ed URL. It prints the

response or an error message if the request fails.

These are the initial setup steps. The following steps are part of the main loop where video frames are processed for hand tracking and

gesture recognition. I'll explain these steps one by one:

MediaPipe Hands ProcessingMediaPipe Hands Processing

ret, frame = cap.read()
frame = cv2.flip(frame, 1)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = hands.process(rgb_frame)

Inside the loop, it captures a frame from the camera (cap.read()) and Jips it horizontally (cv2.Jip) to mirror the image.

The code converts the captured frame to RGB format (cv2.cvtColor) and then uses the MediaPipe Hands module to process the frame

(hands.process) for hand landmark detection. The results are stored in the results variable.

Hand Landmarks and TrackingHand Landmarks and Tracking

if results.multi_hand_landmarks:
 hand_landmarks = results.multi_hand_landmarks[0]
 index_finger_tip = hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP]
 hand_y = int(index_finger_tip.y * height)
 hand_x = int(index_finger_tip.x * width)
 tracking = True

This section checks if hand landmarks are detected in the frame (results.multi_hand_landmarks). If so, it assumes there's only one hand in the

frame and extracts the y-coordinate of the index >nger tip. It updates hand_y and hand_x with the calculated coordinates and sets tracking to

True.

Direction CalculationDirection Calculation

frame_center = (width // 2, height // 2)
if trackin
 direction = find_direction(frame, hand_y, hand_x, frame_center)
 if(direction != prev_dir):
 try:
 link = URL+direction
 http_thread = threading.Thread(target=send, args=(link,))
 http_thread.start()
 except Exception as e:
 print(e)
 prev_dir = direction
 print(direction)

In this step, the code calculates the center of the frame and, if tracking is active, it uses the >nd_direction function to calculate the direction

based on the hand's position. The direction is stored in the direction variable.

We used current direction and previous direction variables. It helps in keeping a semaphore of sending only one HTTP request for every

change in command. Then overall store it in a single URL to send the HTTP request.

VisualizationVisualization

opacity = 0.8
cv2.addWeighted(black_background, opacity, frame, 1 - opacity, 0, frame)
cv2.imshow("Project Almanac", frame)

If tracking is active, this section of the code adds visual elements to the frame, including a >lled circle representing the index >nger tip's

position and text indicating the detected direction.

The code blends a black background with the original frame to create an overlay with adjusted opacity. The resulting frame is displayed in a

window named "Project Almanac".

Étape 7 - Code - Hardware
Now that we are done with the software side code, let us look into

the software side code -
Page 5 / 8

Importing Libraries:Importing Libraries:

#include <WiFi.h>
#include <ESPmDNS.h>
#include <WebServer.h>

In this section, the code includes necessary libraries for WiFi

communication (WiFi.h), setting up mDNS (ESPmDNS) for local

network naming, and creating a web server using the WebServer

library.

De>ning Pin Constants:De>ning Pin Constants:

int LeftA = 33; // IN1
int LeftB = 25; // IN2
int RightA = 26; // IN3
int RightB = 27; // IN4

Here, the code de>nes constants for pin numbers corresponding to

motor control pins (presumably for a robotic project). These pins

will control the movement of motors.

Setting Up Wi-Fi Credentials:Setting Up Wi-Fi Credentials:

const char* ssid = " "; // Enter SSID here
const char* password = " "; // Enter Password here

You need to >ll in your Wi-Fi network's SSID and password here to

connect the ESP8266 device to your local Wi-Fi network.

Con>guring Motor Control Pins:Con>guring Motor Control Pins:

 pinMode(LeftA, OUTPUT);
 pinMode(LeftB, OUTPUT);
 pinMode(RightA, OUTPUT);
 pinMode(RightB, OUTPUT);
 pinMode(2, OUTPUT);

In this part, the code sets the motor control pins (LeftA, LeftB,

RightA, RightB) as OUTPUT pins, presumably to control motors for

a robotic project. It also sets pin 2 as an OUTPUT, possibly for

controlling an indicator LED.

Connecting to Wi-Fi:Connecting to Wi-Fi:

Serial.begin(115200);
 delay(100);
 Serial.println("Connecting to ");
 Serial.println(ssid);

 // Connect to your local Wi-Fi network
 WiFi.begin(ssid, password);

 // Check if the device is connected to the Wi-Fi network
 while (WiFi.status() != WL_CONNECTED) {
 delay(1000);
 Serial.print(".");
 }

 // Display connection status and IP address
 Serial.println("");
 Serial.println("WiFi connected..!");
 Serial.print("Got IP: ");
 Serial.println(WiFi.localIP());

 digitalWrite(2, HIGH); // Turn on a blue LED to indicate a connected Wi
Fi

Page 6 / 8

https://wikifab.org/wiki/Fichier:Visual_Gesture_Controlled_IoT_Car_3.png

This part of the code initiates a connection to the speci>ed Wi-Fi

network using the provided SSID and password. It waits until the

device successfully connects to the Wi-Fi network and then displays

the IP address. Additionally, it turns on an LED on pin 2 to indicate a

successful connection.

Setting up mDNS (Multicast DNS):Setting up mDNS (Multicast DNS):

if (!MDNS.begin("projectalmanac")) {
 Serial.println("Error setting up MDNS responder!");
 while(1) {
 delay(1000);
 }
 }
 Serial.println("mDNS responder started");

Here, the code sets up mDNS with the hostname "projectalmanac."

This allows the device to be reachable on the local network using

the hostname instead of an IP address.

De>ning HTTP Server Endpoints:De>ning HTTP Server Endpoints:

 server.on("/", handle_OnConnect);
 server.on("/left", left);
 server.on("/right", right);
 server.on("/forward", forward);
 server.on("/backward", backward);
 server.on("/stop", halt);
 server.onNotFound(handle_NotFound);

This part de>nes different HTTP server endpoints that can be

accessed via URLs. For example, "/left" will trigger the left function

when accessed.

Starting the Web Server:Starting the Web Server:

server.begin();
 Serial.println("HTTP server started");
 MDNS.addService("http", "tcp", 80);
}

The code starts the web server, making it available for handling

HTTP requests on port 80. It also registers the HTTP service with

mDNS.

Handling Client Requests:Handling Client Requests:

void loop() {
 server.handleClient();
}

In the loop function, the server continuously handles client

requests, responding to various endpoints de>ned earlier.

HTTP Request Handling FunctionsHTTP Request Handling Functions: The code de>nes several

functions (forward, backward, left, right, halt, handle_OnConnect,

handle_NotFound) that are called when speci>c endpoints are

accessed. These functions are responsible for controlling motors

and responding to client requests. The HTML page provides

information about available commands and instructions for

interacting with the device.

Page 7 / 8

Étape 8 - Project Almanac in action!
Now that we have understood the code sequence, let us see the

work!

We can further add more features if you'd like to. Rest, the UI is

simple enough to handle, which comes with not many features, but

important one's.

Page 8 / 8

https://wikifab.org/wiki/Fichier:Visual_Gesture_Controlled_IoT_Car_ezgif-3-8986a713f8.gif

	Visual Gesture Controlled IoT Car
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - Introduction
	Étape 2 - Custom PCB on your Way!
	Étape 3 - Getting Started
	Étape 4 - OpenCV and MediaPipe
	Étape 5 - Hand Tracking and Camera Frame UI
	Étape 6 - Code - Software
	Étape 7 - Code - Hardware
	Étape 8 - Project Almanac in action!

