AWS loT Core loT Platform Series - 6

Use MQTT on Amazon Web Services with a Hardware Device (ESP32) and use the loT Data for further analysis on AWS
itself

@D Difficulté Facile ® Durée 2heure(s) @ Catégories Electronique [@) Coat 15USD($)

Sommaire

Introduction

Etape 1 - Get PCBs For Your Projects Manufactured

Etape 2 - Getting Started

Etape 3- MQTT - Message Queuing and Telemetry Transport
Etape 4 - Sign-In to AWS loT

Etape 5 - Setting up AWS loT Core

Etape 6 - Manage 'Things' in loT Core

Etape 7 - Hardware Device -> loT Core

Etape 8 - Monitor Dataon loT Core

Commentaires

Introduction

What is AWS loT Cloud?
The AWS loT is a cloud platform .a that provides services and solutions to connect and manage billions of devices. Since it is a part of Amazon
Web Services, we can pipeline it with other products and services which will open more possibilities -

Collect, Store, and Analyze loT data for industrial, consumer, commercial, and automotive devices 2. To manage and support these loT
devices in the real-world, AWS loT Core supports below protocols -

o MQTT (Message Queuing and Telemetry Transport)

e MQTT over WSS (WebSockets Secure)

e HTTPS (Hypertext Transfer Protocol - Secure)

® LoRaWAN (Long Range Wide Area Network)

Matériaux Outils

Page 1/9

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/http.html
https://docs.aws.amazon.com/iot/latest/developerguide/connect-iot-lorawan.html

PCBWay orsins sxtrvs 0 = RS g

Etape 1 - Get PCBs For Your
Projects Manufactured

You must check out PCBWAY for ordering PCBs online for cheap!
You get 10 good-quality PCBs manufactured and shipped to your

doorstep for cheap. You will also get a discount on shipping on your

first order. Upload your Gerber files onto PCBWAY to get them m

manufactured with good quality and quick turnaround time.

PCBWay now could provide a complete product solution, from = @ “ <

design to enclosure production. Check out their online Gerber ‘ : o

viewer function. With reward points, you can get free stuff from = N = “ =

their gift shop.

Etape 2 - Getting Started gr— —

(7]

Inour case, we shall be using the AWS Console for a visual e

representation which is a better way to use an loT Cloud Platform
for connecting with the device.

The 221 Console has a message broker that allows the devices and
clients that use MQTT and MQTT over WSS protocols to publish a
and subscribe to messages. It also supports devices and clients that

use the HTTPS protocol to publish messages.

Before we continue further, let us understand the concept of MQTT

which shall be used as a communication protocol in this application.

AWS loT is an application that can be accessed through different s e : A
methods - Device SDKs, Command Line Interface (CLI), Application 5 :

Programming Interface (API), or Console (Dashboard). e

fig 2: AWS Console | o

AWS Health iats Cost and usage ints

Etape 3 - MQTT - Message Queuing and Telemetry Transport

It is a publish/subscribe protocol for machine-to-machine communication. This simple protocol, is easy to implement for any client. Termed as
the Pub and Sub, both are used for same purpose but different method.

Above we can see there are 2 sections (left & right) - Publish and Subscribe. And then there is a middleman - Broker.

loT Devices play the role to collect sensor data and send to the cloud (broker). While PC/Server/Mobile devices play the role to monitor and
receive the sensor data to be viewed - Here, loT Device is a Publisher, and PC Devices are a Subscriber.

[EXAMPLE] When auser1 publishes an image on social media, then only theuser2 subscribed touser1 can
view/receive the image. Here, the user1 is the PUBLISHER, user2 is the SUBSCRIBER, and theuser1's account
is the BROKER.

According to the above analogy, the image that is published is the data, that was transferred from user1 to user2 (2. And that is the exact
scenario in an MQTT Pub/Sub model.

We have a more secure layer [to make sure the datais sha red through a specific path, we call that 'topic, When user1 publishes data on
topic, the subscriber automatically receives if already connected to the broker. Hence, the LOW latency.

g publish
publish ; "
topic_base.’client—/ W bt

= 2 %‘
S T e Server
L, 2 iy -
=3
= /’:ﬁﬁg,f’ Q%%% .
Client B

i] Client A

subscribe
topic_basel/client_b

Publisher

subscribe
topic_baseiclient_a

Page2/9

https://www.pcbway.com/
https://www.pcbway.com/
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_2.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_3.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_4.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_5.JPG

Etape 4 - Sign-In to AWS loT 2

To start using AWS loT, it is necessary to create and sign in to AWS, and open the console for the proper navigation of AWS loT.
[With International Credit/Debit Card] @
e Visit aws.amazon.com/ and click on 'Create an AWS Account.

Enter an Email ID and name to be used for Root access. Enter the verification code and provide a password

Make sure to select 'Personal’ to get access to free tiers

Provide a Payment method (International Credit/Debit card only) and you should be good to go.
Provide basic details and select the 'Basic Plan' for free usage tier of the AWS account.
Within 1 hour the account will be created.

[Without Card Details] @
e Visit aws.amazon.com/education/awseducate/ and click on 'Register Now'
® Provide the basic details and verify the email address.
e A couple of hours later, the account will be created and a temporary password will be shared in the Email ID. Then the same email ID can
be used to access AWS Console from aws.amazon.com.

Sign up for AW>

Contact Us Supportv English My Account~ Sign In Create an AWS Account

Explore Free Tier products with a Ftusenemaladdres i

er Enablement Events Explore More Q new AWS account. functions

To learn more, visit aws.amazon.com/free.

O

Sign in to an existing AWS account

Contact Information

How do you plan to use AWS?

Business - for your work, school, or
organization

© Personal - for your own projects

Page 3/9

http://aws.amazon.com/
https://aws.amazon.com/education/awseducate/
http://aws.amazon.com/
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_6.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_7.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_8.JPG

Etape 5 - Setting up AWS loT Core

After creating the AWS account, loT Core is one of the many services that needs to be accessed for the purpose of 1oT Platform.
e Visit aws.amazon.com and then click 'My Account' dropdown to select ' AWS Management Console'

e If logged in, it will open the AWS Console page

e Now search 'loT Core' in the search bar and open the loT Core window.

® You can explore the loT core before moving forward

® On left-side panel, go to Manage > All devices >Things

® Click on 'Create thing' > 'Create Single Thing' > Enter a 'Thing name' > Choose 'Named shadow' and enter a name.

Shadow name serves the purpose to have a general topic that can be used for sharing data across the device and cloud.
Choose 'Auto-generate a new certificate (recommended) ' > Create a new Policy > In the new page of Policies, under Policy statements >
Policy Document > Choose JSON, and paste the below script -

{
"Version": "2012-10-17",

"Statement": [
{
"Effect": "Allow",
"Action™: [
"iot:Connect",
"iot:Publish",
"iot:Receive",
"iot:Subscribe"
I
"Resource": [
e
1
}
]
}

e After creating the policy, come back to the page and selected the policy to create the Thing.
e Now, download the @ device cert ificate (pem.crt), ¥ private key & public key (pem.key) and rootCA1 (pem) files from the pop-up.

Congratulations! AWS loT Core Thing is created!

Contact Us Support> Englishv My Accoun Sign In to the Console Console Home w. Reset

stomer Enablement Events Recently visited Welcome to AWS

Account Settings

Billing & Cost Management

BEEODE

Security Credentials

aWS I AWS Personal Health
\—;’

Dashboard
DA

BEEEEBER

AWS Health H Costand usage

Q ot core
D itrodacing the e AWS Ko <ontle experence
Ve g e AR T i i 1 L Th s ko o it o v it sad bt Lo
o st thechnge 3 s o a2 i, O a1 GO 104 e kd o

Services 1 2 ts » AWS loT e i
i : Securely connect, test, and B
manage your loT devices
Documentation (23,741) i b i Y -

Knawledge Articles (30)

How it works

© Named shadow

1t names to manage access to properties, and logically group

Unnamed shadow (classic)

A thing can have only one unnamed shadow

Shadow name

temp

ontains only: letters, hyphens, colons, or underscores. A shadow name cannot CoNtain any space

Page 4/9

http://aws.amazon.com/
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_9.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_10.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_11.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_12.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_13.JPG

Device Shadow document MQTT topics

MQTT topics fo
MQTT topics for this Device Sha

hadaw allow applications to publish and subscribe to MQTT messages that interact with this thing’s Device Shadow

Name Action MQTT topic

/get Publish (3 $aws/things/ESP32_AWS/shadow/name/MQTT_based/get [2
/get/accepted Subscribe $aws/things/ESP3. ishadow/name/MQTT accepted [4
/get/rejected Subscribe $aws/things/ESP3. ow/name/MQTT_bas ejected [5

Etape 6 - Manage 'Things' in loT Core

Things section will handle all the topics and message across our platform and device. Therefore, let us manage it to function and receive
message/data from the device to the platform.

e Click on the previously created 'named shadow' > MQTT topics.
e Here, we can see the the topics that are used to share message/data through platform

e Select and open 'get/accepted’ of the thing. And there we will be able to see the message/data published by the user.
e Totest it from within the Console, we can publish a message to the topic.

e Now since the testing is complete and it functions properly, let us prepare the hardware code to send datato loT Core.

Subscriptions B

ing: 32, QTT_based/g P

Subscribe to a topic Publish to a topic

Saws/things/ESP32_AWS/shadow/name/MQTT_based

? ot Plsase send a mesiage to thi Topic name
he toplc nar

Q saws/things/temp/shadow/name/Iplpl/get/accepted X

Message payload

{
“message": "Message 1 for Hackster"

}

» Additional configuration

Etape 7 - Hardware Device -> loT Core

Before we proceed and upload the code, we require to save the certificates and private key to the device's file system, so that while running
the code it can fetch the certificate.

We shall require the SPIFFS (SPI Flash File Storage) library to upload file to the ESP32 device. (To know how)

After installing the flash system, paste all the below files in a folder with thename 'data’ - 1. Device Certificate (pem.crt)2.Private key & Public

key (pem.key)3.RootCA1 (pem)These files were previously downloaded during creation of our 'Thing' on loT Core. And it is required to
establish a secure connection with the cloud.

Let us now begin with the hardware section -
e Goto Arduino IDE, and create a new project.
e Go to sketch > show sketch folder. Move the data folder (with certificates) to this folder.
e On Arduino IDE, upload the folder to the ESP32 using this method.
e Now, ESP32 should have the device certificates and private key in the device storage.

e Visit the things dashboard and click on the device shadow we created. And copy the Device Shadow URL to a notepad.

e Install the libraries - PubSubClient and WiFiClientSecure
e 1. Provide the 5S/D and Password of the WiFi Hotspot, to connect it to internet enabled wifi.2. Paste the " Device shadow URL'on the

maqtt_server string.3. Add the thingname and shadowname in the configuration. (preferably copy-paste from AWS loT Core.
e Once we insert the initialization in the final code -

#include "SPIFFS.h"
#include <WiFiClientSecure.h>
#include <PubSubClient.h>

/I Enter your Device Configuration
const char* ssid =""; // Provide your SSID

Ammat Ak manmiaiard — L I Peavida Panaiiaed

Page5/9

https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_14.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_15.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_16.JPG
https://www.hackster.io/425297/webservers-on-esp32-edffef#toc-spiffs--serial-peripheral-interface-flash-file-system-6
https://www.hackster.io/425297/webservers-on-esp32-edffef#toc-spiffs--serial-peripheral-interface-flash-file-system-6

CulistL Lrial ™ passwuiu — , 11 FIOUVIUE FdS>SWuUIluU

const char* mqtt_server =" "; // Replace with your MQTT END point
String thingname =" ";

String shadowname ="";

constint mqtt_port = 8883;

String publish_topic = "$aws/things/"+thingname+"/shadow/name/"+shadowname+"/update”;
String subscribe_topic = "$aws/things/"+thingname+"/shadow/name/"+shadowname+"/get/accepted";
String Read_rootca, Read_cert, Read_privatekey;
#define BUFFER_LEN 256

long lastMsg = 0;

char msg[BUFFER_LEN];

int Value = 0;

byte mac[6];

char mac_|d[18];

int count = 1;

WiFiClientSecure espClient;

PubSubClient client(espClient);

float temperature = 0;

float humidity = O;

void setup_wifi() {

delay(10);

Serial.printin();

Serial.print("Connecting to ");
Serial.printin(ssid);

WiFi.begin(ssid, password);

while (WiFi.status() '= WL_CONNECTED) {
digitalWrite(2, LOW);

delay(500);

Serial.print(".");

digitalwrite(2,HIGH);

}

randomSeed(micros());

Serial.printin(");

Serial.printin("WiFi connected");
Serial.printin("IP address: ");
Serial.printin(WiFi.locallP());

}

void callback(char* topic, byte* payload, unsigned int length) {
Serial.print("Message arrived [");
Serial.print(topic);

Serial.print("] ");

for (inti=0;i<length; i++) {
Serial.print((char)payload]i]);

}

Serial.printin();

}

void reconnect() {

/I Loop until we're reconnected

while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
/I Create a random client ID

String clientld = "ESP32-";

clientld += String(random(0xffff), HEX);

/I Attempt to connect

WiFi.mode(WIFI_STA);

if (client.connect(clientld.c_str())) {
Serial.printin("connected");

/I Once connected, publish an announcement...
client.publish(publish_topic.c_str(), "hello world");
/I ... and resubscribe
client.subscribe(subscribe_topic.c_str());

}else {

Serial.print("failed, rc=");
Serial.print(client.state());

Serial.printin(" try again in 5 seconds");

/' Wait 5 seconds before retrying

delay(5000);

}

}

}

void setup() {

Serial.begin(115200);

[/l initialize digital pin LED_BUILTIN as an output.

Page 6/9

pinviode(Z, VU I PUI);
setup_wifi();
delay(1000);

11
if (ISPIFFS.begin(true)) {

Serial.printin("An Error has occurred while mounting SPIFFS");
return;

}
I/
/IRoot CA File Reading.

File file2 = SPIFFS.open("/AmazonRootCAl.pem", "r");
if (Mfile2) {

Serial.printin("Failed to open file for reading”);

return;

}

/[Serial.printin("Root CA File Content:");
Serial.printin("Root CA File Read");

while (file2.available()) {

Read_rootca = file2.readString();
/[Serial.printin(Read_rootca);

}
11
/I Cert file reading

File file4 = SPIFFS.open("/device-certificate.pem.crt", "r");
if (Mfiled) {

Serial.printin("Failed to open file for reading");

return;

}

//Serial.printin("Cert File Content:");

Serial.printin("Cert File Read");

while (file4.available()) {

Read_cert = file4.readString();

//Serial.printin(Read_cert);

}
11
IIPrivatekey file reading

File file6 = SPIFFS.open("/device-private.pem.key", "r");
if ('file6) {

Serial.printin("Failed to open file for reading”);

return;

}

/[Serial.printin("privateKey File Content:");
Serial.printin("privateKey File Read");

while (file6.available()) {

Read_privatekey = file6.readString();
[/[Serial.printin(Read_privatekey);

}
I/
char* pRead_rootca;

pRead_rootca = (char *)malloc(sizeof(char) * (Read_rootca.length() + 1));
strcpy(pRead_rootca, Read_rootca.c_str());

char* pRead_cert;

pRead_cert = (char *)malloc(sizeof(char) * (Read_cert.length() + 1));
strcpy(pRead_cert, Read_cert.c_str());

char* pRead_privatekey;

pRead_privatekey = (char *)malloc(sizeof(char) * (Read_privatekey.length() + 1));
strepy(pRead_privatekey, Read_privatekey.c_str());
espClient.setCACert(pRead_rootca);

espClient.setCertificate(pRead_cert);
espClient.setPrivateKey(pRead_privatekey);

client.setServer(mqtt_server, mqtt_port);

client.setCallback(callback);

delay(2000);

}

void loop() {

float h = random(25,30); // Reading Temperature

float t = random(70,80); // Reading Humidity

float tF = (t * 1.8) + 32;

if (Iclient.connected()) {

reconnect();

}

client.loop();

long now = millis();

if (now - lastMsg > 2000) {

Page 7/9

lastMsg = now;
I/
String Temperature = String(t);

String Humidity = String(h);

snprintf (msg, BUFFER_LEN, "{\"state\":{\"reported\":{\"Temperature\":\"%s\" \"Moisture\":\"%s\"}, \"desired\":{\"Temperature\":\"30\" \"Moisture\":\"80\"}}}",
Temperature.c_str(), Humidity.c_str());

Serial.print("Publish message: ");

Serial.print(count);

Serial.printin(msg);

client.publish(publish_topic.c_str(), msg);

count =count + 1;

11
}
}

e Going through the whole is highly recommended, rather than copy-pasting everything.

e Message published to the loT Core is found inside the void loop, where we can provide data like temperature and moisture from the
sensors.

float h = random(25,30);

float t = random(70,80);

e Also, the main message is present inside the sprintf function saved onto the 'msg' string.

snprintf (msg, BUFFER_LEN, "{\"state\":{\"reported\":{\"Temperature\":\"%s\" \"Moisture\":\"%s\"}, \"desired\":{\"Temperature\":\"30\",\"Moisture\":\"80\"}
1", Temperature.c_str(), Humidity.c_str());

e We can change '"Temperature' or 'Moisture' to any data variable we wish to use. Like -snprintf (msg, BUFFER_LEN, "{\"state\":
{\"reported\":{\"Data1\":\"%s\", \"Data2\":\"%s\"}, \"desired\":{\"Data1\":\"30\", \"Data2\":\"80\"}}}", datal.c_str(), data2.c_str());
e We are ready to Upload the code now!

Name

B AmazonRootCA1 pem

[o device-certificate.pem.crt

. device-private.pem.key AntiV

. device-public.pem.key AntiVir.

Device Shadow details

ARN Last updated
@ arnca February 02, 2023, 23:25:33 (UTC+0530)
MQTT topic prefix Version

$aws/things/temp/shadow/name I 1

Device Shadew URL Prefix for Fleet indexing query
nttps:/ | shadow.name/Jlll

Fleet indexing status

© Not indexed

WiFi connected
IP address:
192 168110

Root CA File Read

Cert File Read

privateKey File Read
Attempting MQTT connection...connected

Publish message: 1{"state":{"reported":{"Temperature":

Publish r t 2{"state":{"reported":{"Temperature

Publish me 3{"state":{"reported”:{"Temperature”:"81.97", "M

Page 8/9

https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_17.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_18.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_19.JPG
https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_20.JPG

Subscriptions

Etape 8 - Monitor Data on loT Core

After hardware configuration, it is necessary to know where to view
this data, and how it can be used for a specific purpose. Let us know
how to view the data -
® Open Things > Select your Thing.
® Choose and open Device shadow > under MQTT Topics select
the 'update/accepted' string with the 'Subscribe' action type.
e |nthe new window, while the device is running, it updates the
data on Cloud as well.

Hurray!

Page 9/9

32,

> /thi 95/
Jaccepted

/ESP32-001/update

https://wikifab.org/wiki/Fichier:AWS_IoT_Core_IoT_Platform_Series_-_6_21.JPG

	AWS IoT Core IoT Platform Series - 6
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - Get PCBs For Your Projects Manufactured
	Étape 2 - Getting Started 🗽
	Étape 3 - MQTT - Message Queuing and Telemetry Transport 🔀
	Étape 4 - Sign-In to AWS IoT 🔐
	Étape 5 - Setting up AWS IoT Core
	Étape 6 - Manage 'Things' in IoT Core
	Étape 7 - Hardware Device -> IoT Core
	Étape 8 - Monitor Data on IoT Core

